Continuous probability distribution examples and solutions pdf

Problem

Let $X$ be a random variable with PDF given by \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} cx^2& \quad |x| \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}

  1. Find the constant $c$.
  2. Find $EX$ and Var$(X)$.
  3. Find $P(X \geq \frac{1}{2})$.

  • Solution
      1. To find $c$, we can use $\int_{-\infty}^{\infty} f_X(u)du=1$:
        $1$ $=\int_{-\infty}^{\infty} f_X(u)du$
        $= \int_{-1}^{1} cu^2du$
        $= \frac{2}{3} c.$

        Thus, we must have $c=\frac{3}{2}$.
      2. To find $EX$, we can write
        $EX$ $= \int_{-1}^{1} u f_X(u)du$
        $= \frac{3}{2}\int_{-1}^{1} u^3 du$
        $=0.$

        In fact, we could have guessed $EX=0$ because the PDF is symmetric around $x=0$. To find Var$(X)$, we have
        $\textrm{Var}(X)$ $=EX^2-(EX)^2=EX^2$
        $= \int_{-1}^{1} u^2 f_X(u)du$
        $= \frac{3}{2}\int_{-1}^{1} u^4 du$
        $=\frac{3}{5}.$

      3. To find $P(X \geq \frac{1}{2})$, we can write $$P(X \geq \frac{1}{2})=\frac{3}{2} \int_{\frac{1}{2}}^{1} x^2dx=\frac{7}{16}.$$

Problem

Let $X$ be a continuous random variable with PDF given by $$f_X(x)=\frac{1}{2}e^{-|x|}, \hspace{20pt} \textrm{for all }x \in \mathbb{R}.$$ If $Y=X^2$, find the CDF of $Y$.

  • Solution
    • First, we note that $R_Y=[0,\infty)$. For $y \in [0,\infty)$, we have

      $F_Y(y)$ $=P(Y \leq y)$
      $=P(X^2 \leq y)$
      $=P(-\sqrt{y} \leq X \leq \sqrt{y})$
      $=\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2}e^{-|x|} dx$
      $=\int_{0}^{\sqrt{y}} e^{-x} dx$
      $=1-e^{-\sqrt{y}}.$

      Thus, \begin{equation} \nonumber F_Y(y) = \left\{ \begin{array}{l l} 1-e^{-\sqrt{y}} & \quad y \geq 0\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}

Problem

Let $X$ be a continuous random variable with PDF \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} 4x^3 & \quad 0 < x \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation} Find $P(X \leq \frac{2}{3} | X> \frac{1}{3})$.

  • Solution
    • We have

      $P(X \leq \frac{2}{3} | X > \frac{1}{3})$ $=\frac{P(\frac{1}{3} < X \leq \frac{2}{3})}{P(X > \frac{1}{3})}$
      $=\frac{\int_{\frac{1}{3}}^{\frac{2}{3}} 4x^3 dx}{\int_{\frac{1}{3}}^{1} 4x^3 dx}$
      $=\frac{3}{16}.$

Problem

Let $X$ be a continuous random variable with PDF \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} x^2\left(2x+\frac{3}{2}\right) & \quad 0 < x \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation} If $Y=\frac{2}{X}+3$, find Var$(Y)$.

  • Solution
    • First, note that $$\textrm{Var}(Y)=\textrm{Var}\left(\frac{2}{X}+3\right)=4\textrm{Var}\left(\frac{1}{X}\right), \hspace{15pt} \textrm{using Equation 4.4}$$ Thus, it suffices to find Var$(\frac{1}{X})=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2$. Using LOTUS, we have $$E\left[\frac{1}{X}\right]=\int_{0}^{1} x\left(2x+\frac{3}{2}\right) dx =\frac{17}{12}$$ $$E\left[\frac{1}{X^2}\right]=\int_{0}^{1} \left(2x+\frac{3}{2}\right) dx =\frac{5}{2}.$$ Thus, Var$\left(\frac{1}{X}\right)=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2=\frac{71}{144}$. So, we obtain $$\textrm{Var}(Y)=4\textrm{Var}\left(\frac{1}{X}\right)=\frac{71}{36}.$$

Problem

Let $X$ be a positive continuous random variable. Prove that $EX=\int_{0}^{\infty} P(X \geq x) dx$.

  • Solution
    • We have $$P(X \geq x)=\int_{x}^{\infty}f_X(t)dt.$$ Thus, we need to show that $$\int_{0}^{\infty} \int_{x}^{\infty}f_X(t)dtdx=EX.$$ The left hand side is a double integral. In particular, it is the integral of $f_X(t)$ over the shaded region in Figure 4.4.

      Fig.4.4 - The shaded area shows the region of the double integral of Problem 5. We can take the integral with respect to $x$ or $t$. Thus, we can write
      $\int_{0}^{\infty} \int_{x}^{\infty}f_X(t)dtdx$ $=\int_{0}^{\infty} \int_{0}^{t}f_X(t)dx dt$
      $=\int_{0}^{\infty} f_X(t) \left(\int_{0}^{t} 1 dx \right) dt$
      $=\int_{0}^{\infty} tf_X(t) dt=EX \hspace{20pt} \textrm{since $X$ is a positive random variable}.$

Problem

Let $X \sim Uniform(-\frac{\pi}{2},\pi)$ and $Y=\sin(X)$. Find $f_Y(y)$.

  • Solution
    • Here $Y=g(X)$, where $g$ is a differentiable function. Although $g$ is not monotone, it can be divided to a finite number of regions in which it is monotone. Thus, we can use Equation 4.6. We note that since $R_X=[-\frac{\pi}{2},\pi]$, $R_Y=[-1,1]$. By looking at the plot of $g(x)=\sin(x)$ over $[-\frac{\pi}{2},\pi]$, we notice that for $y \in (0,1)$ there are two solutions to $y=g(x)$, while for $y \in (-1,0)$, there is only one solution. In particular, if $y \in (0,1)$, we have two solutions: $x_1=\arcsin(y)$, and $x_2=\pi-\arcsin(y)$. If $y \in (-1,0)$ we have one solution, $x_1=\arcsin(y)$. Thus, for $y \in(-1,0)$, we have

      $f_Y(y)$ $= \frac{f_X(x_1)}{|g'(x_1)|}$
      $= \frac{f_X(\arcsin(y))}{|\cos(\arcsin(y))|}$
      $= \frac{\frac{2}{3 \pi}}{\sqrt{1-y^2}}.$

      For $y \in(0,1)$, we have
      $f_Y(y)$ $= \frac{f_X(x_1)}{|g'(x_1)|}+\frac{f_X(x_2)}{|g'(x_2)|}$
      $= \frac{f_X(\arcsin(y))}{|\cos(\arcsin(y))|}+\frac{f_X(\pi-\arcsin(y))}{|\cos(\pi-\arcsin(y))|}$
      $= \frac{\frac{2}{3 \pi}}{\sqrt{1-y^2}}+\frac{\frac{2}{3 \pi}}{\sqrt{1-y^2}}$
      $= \frac{4}{3 \pi \sqrt{1-y^2}}.$

      To summarize, we can write \begin{equation} \nonumber f_Y(y) = \left\{ \begin{array}{l l} \frac{2}{3 \pi \sqrt{1-y^2}} & \quad -1 < y < 0\\ \frac{4}{3 \pi \sqrt{1-y^2}} & \quad 0 < y < 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}

The print version of the book is available through Amazon here.

What is an example of a continuous probability distribution?

Because there are infinite values that X could assume, the probability of X taking on any one specific value is zero. Therefore we often speak in ranges of values (p(X>0) = . 50). The normal distribution is one example of a continuous distribution.

Can you give 5 examples of continuous random variables?

In general, quantities such as pressure, height, mass, weight, density, volume, temperature, and distance are examples of continuous random variables.

What is continuous probability distribution formula?

A normal distribution is one with parameters µ ( called the mean) and s2 (called the variance) that have a range of -8 to +8. Its continuous probability distribution is given by the following: f(x;µ, s)= (1/ s p) exp(-0.5 (x-µ)2/ s2).

What are four common types of continuous probability distribution?

List of Continuous Probability Distributions.
Continuous Uniform Distribution..
Normal Distribution..
Log-normal Distribution..
Student's T Distribution..

Toplist

Latest post

TAGs