Pick a nucleophile to make each flavor product

Pick a nucleophile to make each flavor product

  • Home
  • About
  • News
  • Advanced Search
  • Contact Us
  • Site Map
  • Help

Sample records for nucleophilic addition reactions

  1. An unprecedented chemospecific and stereoselective tandem nucleophilic addition/cycloaddition reaction of nucleophilic carbenes with ketenimines.

    Science.gov (United States)

    Cheng, Ying; Ma, Yang-Guang; Wang, Xiao-Rong; Mo, Jun-Ming

    2009-01-16

    The first study of the reaction between nucleophilic carbenes and ketenimines is reported. The interaction of thiazole and benzothiazole carbenes with ketenimines proceeded in a chemospecific and stereoselective manner to produce thiazole- and benzothiazole-spiro-pyrrole derivatives generally in good yields. The reaction was proposed to proceed via a tandem nucleophilic addition of carbene to the C=N bond of ketenimine followed by a stepwise [3+2] cycloaddition of the 1,3-dipolar intermediate with the C=C bond of ketenimine. This reaction provides a powerful protocol for the construction of novel polyfunctional thiazole-spiro-pyrrole or benzothiazole-spiro-pyrrole compounds that are not readily accessible by other methods.

  2. Addition of HO-nucleophiles to free and coordinated nitriles

    International Nuclear Information System (INIS)

    Bokach, Nadejda A; Kukushkin, Vadim Yu

    2005-01-01

    The review surveys data on the addition of HO-nucleophiles (water, oximes, hydroxylamines, hydroxamic acids, alcohols) to nitriles. Main methods for C≡N bond activation in nucleophilic addition reactions are discussed. Particular attention is given to activation of nitriles through coordination to metal centres.

  3. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    Science.gov (United States)

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Olefination reactions of phosphorus-stabilized carbon nucleophiles.

    Science.gov (United States)

    Gu, Yonghong; Tian, Shi-Kai

    2012-01-01

    A range of phosphorus-stabilized carbon nucleophiles have been employed for alkene synthesis with high chemo-, regio-, and stereoselectivity. The Wittig, Horner-Wadsworth-Emmons, Horner-Wittig, and Evans-Akiba reactions utilize phosphonium-, phosphonate-, phosphine oxide-, and pentacoordinated phosphorane-stabilized carbanions as nucleophiles, respectively, to undergo olefination with aldehydes or ketones, and each of these transformations has its own advantages and limitations. Modifying the structures of these nucleophiles along with optimizing reaction conditions results in the formation of a wide variety of polysubstituted alkenes in a highly stereoselective manner. The olefination of imines with phosphonium ylides has recently emerged as a useful approach to tune the stereoselectivity for alkene synthesis. This review focuses on recent advances in the stereoselective olefination of phosphorus-stabilized carbon nucleophiles.

  5. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    Science.gov (United States)

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  6. Nucleophilic addition of nitriles to secondary terpene alcohols

    International Nuclear Information System (INIS)

    Kozlov, N.G.; Popova, L.A.; Nesterov, G.V.

    1987-01-01

    The addition of nitriles of varying nucleophilicity to isocamphanol and exo-1,5,5-trimethyl-bicyclo[2.2.1]heptan-2-ol (isofenchol) was investigated. The authors examined the effect of the reaction conditions on the yield and structure of the target products of the reaction: N-substituted amides. As a result of the study, it was shown that in the reaction with chloroacetonitrile, propionitrile, methoxypropionitrile, isovaleronitrile, and phenylacetonitrile under the conditions of the Ritter reaction, isocamphanol is transformed into the corresponding substituted exo-N-acyl-1,7,7-trimethylbicyclo[2.2.1]hept-2-ylamines, as in the reaction with aceto- and benzonitriles, due to 2,6-hydride displacement accompanied by Wagner-Meerwein rearrangement. The structures of these amides were demonstrated by PMR spectroscopy

  7. Kinetic secondary deuterium isotope effect in addition of nucleophile to m-bromobenzaldehyde

    International Nuclear Information System (INIS)

    Amaral, L. do; Rossi, M.H.

    1985-01-01

    The kinetic secondary deuterium isotope effects, KD/KH for hydrated proton catalyzed addition of semicarbazide, methoxyamine and hydroxylamine to m-bromobenzaldehyde is studied. The nature of the nucleophile, addition of the carbonyl group and the chemical reactions are evaluated. (M.J.C.) [pt

  8. Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions

    International Nuclear Information System (INIS)

    Jorapur, Yogesh R.; Chi, Dae Yoon

    2006-01-01

    Ionic liquids are alternative reaction media of increasing interest and are regarded as an eco-friendly alternatives, of potential use in place of the volatile organic solvents typically used in current chemical processing methods. They are emerging as the smart and excellent solvents, which are made of positive and negative ions that they are liquids near room temperature. The nucleophilic substitution reaction is one of the important method for inserting functional groups into a carbon skeleton. Many nucleophilic substitution reactions have been found with enhanced reactivity and selectivity in ionic liquid. In this review, some recent interesting results of nucleophilic substitution reactions such as hydroxylations, ether cleavages, carbon-X (X = carbon, oxygen, nitrogen, fluorine) bond forming reactions, and ring opening of epoxides in ionic liquids are discussed

  9. Conjugate Addition of Nucleophiles to the Vinyl Function of 2-Chloro-4-vinylpyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2010-03-01

    Full Text Available Conjugate addition reaction of various nucleophiles across the vinyl group of 2-chloro-4-vinylpyrimidine, 2-chloro-4-(1-phenylvinylpyrimidine and 2-chloro-4-vinylquinazoline provides the corresponding 2-chloro-4-(2-substituted ethylpyrimidines and 2-chloro-4-(2-substituted ethylquinazolines. Treatment of these products, without isolation, with N-methylpiperazine results in nucleophilic displacement of chloride and yields the corresponding 2,4-disubstituted pyrimidines and quinazolines.

  10. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  11. Nucleophilic ring opening reactions of aziridines.

    Science.gov (United States)

    Akhtar, Rabia; Naqvi, Syed Ali Raza; Zahoor, Ameer Fawad; Saleem, Sameera

    2018-05-04

    Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013-2017 for aziridine ring opening reactions as well as their synthetic applications is described.

  12. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Makki, Arwa; Sekar, N; Eppinger, Jö rg

    2017-01-01

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  13. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  14. A quantitative approach to nucleophilic organocatalysis

    Directory of Open Access Journals (Sweden)

    Herbert Mayr

    2012-09-01

    Full Text Available The key steps in most organocatalytic cyclizations are the reactions of electrophiles with nucleophiles. Their rates can be calculated by the linear free-energy relationship log k(20 °C = sN(E + N, where electrophiles are characterized by one parameter (E and nucleophiles are characterized by the solvent-dependent nucleophilicity (N and sensitivity (sN parameters.Electrophilicity parameters in the range –10 E N N parameters of enamines derived from phenylacetaldehyde and MacMillan’s imidazolidinones one can rationalize why only strong electrophiles, such as stabilized carbenium ions (–8 E E = –6.75, are suitable electrophiles for enamine activated reactions with imidazolidinones. Several mechanistic controversies concerning iminium and enamine activated reactions could thus be settled by studying the reactivities of independently synthesized intermediates.Kinetic investigations of the reactions of N-heterocyclic carbenes (NHCs with benzhydrylium ions showed that they have similar nucleophilicities to common organocatalysts (e.g., PPh3, DMAP, DABCO but are much stronger (100–200 kJ mol–1 Lewis bases. While structurally analogous imidazolylidenes and imidazolidinylidenes have comparable nucleophilicities and Lewis basicities, the corresponding deoxy Breslow intermediates differ dramatically in reactivity. The thousand-fold higher nucleophilicity of 2-benzylidene-imidazoline relative to 2-benzylidene-imidazolidine is explained by the gain of aromaticity during electrophilic additions to the imidazoline derivatives. O-Methylated Breslow intermediates are a hundred-fold less nucleophilic than deoxy Breslow intermediates.

  15. Nucleophilic addition of amines to the activated ethylene bond in non-aqueous media

    International Nuclear Information System (INIS)

    Perepichka, Igor F.; Popov, Anatolii F.

    1995-01-01

    The kinetics of addition of a number of primary and secondary aliphatic amines to trans-(2-furyl) nitro ethylene (1) has been studied in solvents of various polarities (from acetonitrile, ε 37.5, to heptane, ε 1.89). It has been shown that the reaction is catalysed both by the amine reagent and by tertiary amines. On the basis of analyzing the observed kinetic regularities a stepwise reaction mechanism has been proposed which involves formation of zwitterionic intermediate (3) at the first equilibrium step (k 1 , K 1 ) which is then converted into the reaction product by means of proton transfer in parallel routes, the non-catalytic one (k 2 ) and that catalysed by the initial (K 3 ) or tertiary (K 4 ) amine. The observed high values of the deuterium isotope effects in the reaction (K H /K D ∼ 2.3 - 8.9) confirm that proton transfer occurs in the rate-limiting step of the reaction (primary kinetic isotope effect). The third order by amine kinetic route is observed in low polar media which is due to participation of amine dimers (R 2 NH HNR 2 ) in the reaction. The observed kinetic regularities are compared with those for the nucleophilic aromatic substitution reactions in low-polar media, and the conclusion has been made that the reaction route of the third order by amine proceeds as reversible nucleophilic attack by amine dimer and following base-catalysed transformation of the intermediate into the product. (author)

  16. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    Science.gov (United States)

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  17. Erosion of stereochemical control with increasing nucleophilicity: O-glycosylation at the diffusion limit.

    Science.gov (United States)

    Beaver, Matthew G; Woerpel, K A

    2010-02-19

    Nucleophilic substitution reactions of 2-deoxyglycosyl donors indicated that the reactivity of the oxygen nucleophile has a significant impact on stereoselectivity. Employing ethanol as the nucleophile resulted in a 1:1 (alpha:beta) ratio of diastereomers under S(N)1-like reaction conditions. Stereoselective formation of the 2-deoxy-alpha-O-glycoside was only observed when weaker nucleophiles, such as trifluoroethanol, were employed. The lack of stereoselectivity observed in reactions of common oxygen nucleophiles can be attributed to reaction rates of the stereochemistry-determining step that approach the diffusion limit. In this scenario, both faces of the prochiral oxocarbenium ion are subject to nucleophilic addition to afford a statistical mixture of diastereomeric products. Control experiments confirmed that all nucleophilic substitution reactions were performed under kinetic control.

  18. Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles.

    Science.gov (United States)

    Fliege, R; Metzler, M

    2000-05-01

    The mycotoxin patulin (PAT) is believed to exert its cytotoxic and chromosome-damaging effects by forming covalent adducts with essential cellular thiols. Since the chemical structures of such adducts are unknown to date, we have studied the reaction of PAT and its O-acetylated derivative with the monofunctional thiol model compound 4-bromothiophenol (BTP), which was chosen due to analytical advantages. By means of analytical and preparative high-performance liquid chromatography, 16 adducts of PAT and 3 adducts of acetyl-PAT were isolated and their chemical structures elucidated by (1)H and (13)C NMR, IR, and UV spectroscopy. Time course studies and analysis of daughter product formation from isolated intermediate adducts led to a detailed scheme for the reaction of PAT with BTP. The structures of adducts of PAT formed with other model nucleophiles, e. g., the aliphatic thiol 2-mercaptoethanol and the aromatic amine 4-bromoaniline, were also elucidated and found to corroborate the reaction scheme. In addition, one further reaction pathway was observed with 2-mercaptoethanol, which appears to be independent from those found for BTP. Our study with model nucleophiles provides insights into the electrophilic reactivity of PAT and proved to be useful for the structure elucidation of PAT adducts with biological nucleophiles of toxicological relevance, as will be reported by Fliege and Metzler [(2000) Chem. Res. Toxicol. 13, 373-381].

  19. Reactions of aromatic diazonium salts with unsaturated compounds in the presence of nucleophiles

    Science.gov (United States)

    Grishchuk, B. D.; Gorbovoi, P. M.; Ganushchak, N. I.; Dombrovskii, A. V.

    1994-03-01

    The review surveys the reactions of aromatic diazonium salts with diene and monounsaturated compounds in the presence of nucleophiles. Certain further reactions of the reaction products and their application are considered. The bibliography includes 63 references.

  20. Nucleophilic Fluorination Reactions in Novel Reaction Media for 18F-Fluorine Labeling Method

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Jeong, Hwan Jeong; Lim, Seok Tae; Sohn, Myung Hee

    2009-01-01

    Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography (PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with 18F-fluorine. In this review we describe recent methods and novel trends for the introduction of 18 F-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic 18 F-fluorination of some halo- and mesyloxyalkanes to the corresponding 18 F-fluoroalkanes with 18 F-fluoride obtained from an 18 O(p,n) 18 F reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for 18 F-fluorine labeling. Ionic liquid method is rapid and particularly convenient because 18 F-fluoride in H 2 O can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with 18 F-fluorine for PET imaging, and it is illustrated by the synthesis of 18 F-fluoride radiolabeled molecular imaging probes, such as 18 F-FDG, 18 F-FLT, 18 F-FP-CIT, and 18 F-FMISO, in high yield and purity and in shorter times compared to conventional syntheses

  1. Diethyl Fluoronitromethylphosphonate: Synthesis and Application in Nucleophilic Fluoroalkyl Additions

    Czech Academy of Sciences Publication Activity Database

    Opekar, Stanislav; Pohl, Radek; Beran, Pavel; Rulíšek, Lubomír; Beier, Petr

    2014-01-01

    Roč. 20, č. 5 (2014), s. 1453-1458 ISSN 0947-6539 R&D Projects: GA ČR GP203/08/P310 Institutional support: RVO:61388963 Keywords : C1 building blocks * fluorine * nucleophilic addition * phosphanes * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  2. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  3. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Fiaz S. Mohammed

    2015-12-01

    Full Text Available The reversible reaction of carbon dioxide (CO2 with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO2 is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl–n-alky ureas.

  4. Nucleophilic additions of [(diethoxyphosphoryl)difluoromethyl]lithium to a,b-unsaturated compounds

    Czech Academy of Sciences Publication Activity Database

    Cherkupally, Prabhakar; Beier, Petr

    2012-01-01

    Roč. 137, May (2012), s. 34-43 ISSN 0022-1139 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : 1,4-Addition * nucleophilic addition * difluoromethylphosphonate Subject RIV: CC - Organic Chemistry Impact factor: 1.939, year: 2012

  5. Theoretical study on the nucleophilic fluoroalkylation of propylene oxide with fluorinated sulfones

    Directory of Open Access Journals (Sweden)

    Han Ling-Li

    2013-01-01

    Full Text Available The path of nucleophilic fluoroalkylation reaction of propylene oxide with PhSO2CYF- (Y=F,H, and PhSO2, respectively in gas phase and in Et2O solvent were studied theoretically. The nucleophilic fluoroalkylation of propylene oxide with fluorinated carbanions was probed by the reactivity comparison between (benzenesulfonylmonofluoromethyl anion (PhSO2CHF-, (benzenesulfonyl difluoromethyl anion (PhSO2CF2-, and bis(benzenesul-fonyl monofluoromethyl anion ((PhSO22CF-. The nucleophilicity reactivity order of PhSO2CYF- (Y = F, H, and PhSO2 is [(PhSO22CF-] > PhSO2CHF- > PhSO2CF2-, which indicates that introducing another electron-withdrawing benzenesulfonyl group is an effective way to significantly increase the nucleophilicity of the fluorinate carbanions. For comparison, we also studied the nucleophilic addition reactions of propylene oxide with chlorine substituted carbanion PhSO2CHCl-. The calculated results show that the nucleophilicity of PhSO2CYF- is better than that of PhSO2CHCl- for the ring opening reaction with propylene oxide. The calculated results are in good agreement with the available experiments.

  6. Benzimidazoles and benzoxazoles via the nucleophilic addition of anilines to nitroalkanes.

    Science.gov (United States)

    Aksenov, Alexander V; Smirnov, Alexander N; Aksenov, Nicolai A; Bijieva, Asiyat S; Aksenova, Inna V; Rubin, Michael

    2015-04-14

    PPA-induced umpolung triggers efficient nucleophilic addition of unactivated anilines to nitroalkanes to produce N-hydroxyimidamides. The latter undergo sequential acid-promoted cyclocondensation with ortho-OH or ortho-NHR moieties to afford benzoxazoles and benzimidazoles, respectively.

  7. Ring opening of epoxides with C-nucleophiles.

    Science.gov (United States)

    Faiz, Sadia; Zahoor, Ameer Fawad

    2016-11-01

    Ring opening of epoxides has been an area of interest for organic chemists, owing to their reactivity toward nucleophiles. Such reactions yield important products depending on the type of nucleophiles used. This review article covers the synthetic approaches (1991-2015) used for the ring opening of epoxides via carbon nucleophiles.

  8. Nucleophilic radioiodination of 6-bromocholesterol via non-isotopic exchange reaction in molten state

    International Nuclear Information System (INIS)

    El-Shaboury, G.; Farah, K.; El-Tawoosy, M.

    2001-01-01

    A synthetic method for preparing radioiodinated 6-[ 125 I]iodocholesterol [CL-6- 125 I] for adrenal evaluation is described. The radioiodine atom was incorporated onto the cholesterol molecule via non-isotopic exchange between 6-bromocholesterol [CL-6-Br] and radioiodine as iodide ion [ 125 I - ] in a molten state. The different parameters affecting the yield of exchange were investigated using 125 I (T 1/2 ≅ 60 d) to centralize the different physical and chemical reaction conditions and purification of the final product as pure as 6-[ 125 I]iodocholesterol. The method was suitable to either 131 I (T 1/2 ≅ 8 d) nucleophilic radioiodination which facilitates the scanning of the adrenal for a few days after administration or the use of 124 I (T 1/2 ≅ 4.16 d) nucleophilic radioiodination for PET evaluation of the adrenal. TLC as well as HPLC chromatographic analysis is used to determine the efficiency of the exchange reactions under different chemical reaction conditions and to monitor the stability of the final product as pure as CL-6- 125 I with radiochemical purity of ≅99%. This no-carrier-added method improved the speed of the reaction and affords high radiochemical yield of 90% and suitable specific activity due to the use of CL-6-Br rather than CL-6-I as substrate. Kinetic studies revealed second order iodine-bromine exchange reaction. The activation energy for the exchange reaction in ammonium acetate (m.p. 114 deg C) was calculated to be 4.576 kcal/mole. (author)

  9. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  10. Theoretical study of the nucleophilic addition of oximes to the nitrile complexes trans-/cis-[ReCl4(NCCH3)2

    International Nuclear Information System (INIS)

    Klestova-Nadeeva, E. A.; Kuznetsov, M. L.; Dement'ev, A. I.

    2005-01-01

    The reaction of nucleophilic addition of oximes (HON=CRR 1 ) to organic nitriles coordinated in the rhenium complexes trans-/cis-[ReCl 4 (NCCH 3 ) 2 ] was theoretically studied by the Hartree-Fock and density functional theory (B3LYP) methods. The reaction mechanism involves (I) the initial change of the oxime conformation; (II) the formation of the orientation complex with the coordinated nitrile molecule, which transforms into a four-membered transition state; (III) the formation of the addition product in a less stable conformation; and (IV) the formation of the ultimate addition product. The calculations make it possible to interpret the activation of nitriles in terms of the activated complex theory as a result of stabilization of the transition state in going from the free to the coordinated nitrile [ru

  11. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    Science.gov (United States)

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  12. One-pot regioselective synthesis of nitrophenyloxazolinyl styrene oxides by the Darzens reaction of vicarious nucleophilic substitution-formed carbanions of 2-dichloromethyl-4,4-dimethyloxazoline.

    Science.gov (United States)

    Florio, Saverio; Lorusso, Patrizia; Granito, Catia; Luisi, Renzo; Troisi, Luigino

    2004-07-23

    The vicarious nucleophilic substitution reaction of dichloromethyloxazoline 2 with nitrobenzene has been investigated. Treatment of 2 with t-BuOK followed by the addition of nitrobenzene leads to benzylic carbanions 4 or 9 depending upon the solvent used (DMSO, DMF, or THF). Subsequent treatment of 4 or 9 with aldehydes, in a Darzens-like reaction, furnishes very good yields of nitrophenyl oxazolinyloxiranes 8 and 11. 1,2-Dioxazolinyl-1,2-dinitrophenylethene 7 forms quantitatively when carbanion 4 is allowed to warm to room temperature in the absence of external electrophiles.

  13. Direct no-carrier-added 18F-labelling of arenes via nucleophilic substitution on aryl(2-thienyl)iodonium salts

    International Nuclear Information System (INIS)

    Ross, T.L.

    2006-01-01

    For in vivo imaging of molecular processes via positron emission tomography (PET) radiotracers of high specific activity are demanded. In case of the most commonly used positron emitter fluorine-18, this is only achievable with no-carrier-added [ 18 F]fluoride, which implies nucleophilic methods of 18 F-substitution. Whereas electron deficient aromatic groups can be labelled in one step using no-carrier-added [ 18 F]fluoride, electron rich 18 F-labelled aromatic molecules are only available by multi-step radiosyntheses or carrier-added electrophilic reactions. Here, diaryliodonium salts represent an alternative, since they have been proven as potent precursor for a direct nucleophilic 18 F-introduction into aromatic molecules. Furthermore, as known from non-radioactive studies, the highly electron rich 2-thienyliodonium leaving group leads to a high regioselectivity in nucleophilic substitution reactions. Consequently, a direct nucleophilic no-carrier-added 18 F-labelling of electron rich arenes via aryl(2-thienyl)iodonium precursors was developed in this work. The applicability of direct nucleophilic 18 F-labelling was examined in a systematic study on eighteen aryl(2-thienyl)iodonium salts. As electron rich precursors the ortho-, meta- and para-methoxyphenyl(2-thienyl)iodonium bromides, iodides, tosylates and triflates were synthesised. In addition, para-substituted (R=BnO, CH 3 , H, Cl, Br, I) aryl(2-thienyl)iodonium bromides were prepared as precursors with a systematically varying electron density. As first approach, the general reaction conditions of the nucleophilic 18 F-substitution procedure were optimised. The best conditions for direct nucleophilic no-carrier-added 18 F-labelling via aryl(2-thienyl)iodonium salts were found with dimethylformamide as solvent, a reaction temperature of 130±3 C and 25 mmol/l as concentration of the precursor. (orig.)

  14. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    Science.gov (United States)

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Dechlorination of chloropicrin and 1,3-dichloropropene by hydrogen sulfide species: redox and nucleophilic substitution reactions.

    Science.gov (United States)

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin; Gan, Jianying

    2006-03-22

    The chlorinated fumigants chloropicrin (trichloronitromethane) and 1,3-dichloropropene (1,3-D) are extensively used in agricultural production for the control of soilborne pests. The reaction of these two fumigants with hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid redox reaction in the hydrogen sulfide solution. Transformation products indicated reductive dechlorination of chloropicrin by hydrogen sulfide species to produce dichloro- and chloronitromethane. The transformation of chloropicrin in hydrogen sulfide solution significantly increased with increasing pH, indicating that H2S is less reactive toward chloropicrin than HS- is. For both 1,3-D isomers, kinetics and transformation products analysis revealed that the reaction between 1,3-D and hydrogen sulfide species is an S(N)2 nucleophilic substitution process, in which the chlorine at C3 of 1,3-D is substituted by the sulfur nucleophile to form corresponding mercaptans. The 50% disappearance time (DT50) of 1,3-D decreased with increasing hydrogen sulfide species concentration at a constant pH. Transformation of 1,3-D was more rapid at high pH, suggesting that the reactivity of hydrogen sulfide species in the experimental system stems primarily from HS-. Because of the relatively low smell threshold values and potential environmental persistence of organic sulfur products yielded by the reaction of 1,3-D and HS-, the effects of reduced sulfide species should be considered in the development of alternative fumigation practices, especially in the integrated application of sulfur-containing fertilizers.

  16. Ring transformation of chromone-3-carboxamide under nucleophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Magdy A., E-mail: [Department of Chemistry, Faculty of Education, Ain Shams University, Cairo(Egypt)

    2013-11-15

    The chemical reactivity of chromone-3-carboxamide was studied towards a series of nitrogen and carbon nucleophiles. Treatment of carboxamide with some primary amines gave chromane-2,4-diones. Condensation of carboxamide with hydrazine hydrate, phenyl hydrazine and hydroxylamine hydrochloride afforded chromenopyrazoles and chromenoisoxazole, respectively. Reaction of carboxamide with guanidine hydrochloride, cyanoguanidine and thiourea resulted in ring transformation producing chromenopyridines. The chemical behavior of carboxamide was also studied towards ethylenediamine, o-phenylenediamine, 2-aminophenol and 2-aminothiophenol. A variety of products were isolated from the reaction of carboxamide with some carbon nucleophiles. (author)

  17. Direct no-carrier-added {sup 18}F-labelling of arenes via nucleophilic substitution on aryl(2-thienyl)iodonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Ross, T L

    2006-01-15

    For in vivo imaging of molecular processes via positron emission tomography (PET) radiotracers of high specific activity are demanded. In case of the most commonly used positron emitter fluorine-18, this is only achievable with no-carrier-added [{sup 18}F]fluoride, which implies nucleophilic methods of {sup 18}F-substitution. Whereas electron deficient aromatic groups can be labelled in one step using no-carrier-added [{sup 18}F]fluoride, electron rich {sup 18}F-labelled aromatic molecules are only available by multi-step radiosyntheses or carrier-added electrophilic reactions. Here, diaryliodonium salts represent an alternative, since they have been proven as potent precursor for a direct nucleophilic {sup 18}F-introduction into aromatic molecules. Furthermore, as known from non-radioactive studies, the highly electron rich 2-thienyliodonium leaving group leads to a high regioselectivity in nucleophilic substitution reactions. Consequently, a direct nucleophilic no-carrier-added {sup 18}F-labelling of electron rich arenes via aryl(2-thienyl)iodonium precursors was developed in this work. The applicability of direct nucleophilic {sup 18}F-labelling was examined in a systematic study on eighteen aryl(2-thienyl)iodonium salts. As electron rich precursors the ortho-, meta- and para-methoxyphenyl(2-thienyl)iodonium bromides, iodides, tosylates and triflates were synthesised. In addition, para-substituted (R=BnO, CH{sub 3}, H, Cl, Br, I) aryl(2-thienyl)iodonium bromides were prepared as precursors with a systematically varying electron density. As first approach, the general reaction conditions of the nucleophilic {sup 18}F-substitution procedure were optimised. The best conditions for direct nucleophilic no-carrier-added {sup 18}F-labelling via aryl(2-thienyl)iodonium salts were found with dimethylformamide as solvent, a reaction temperature of 130{+-}3 C and 25 mmol/l as concentration of the precursor. (orig.)

  18. Experimental Determination of Activation Energy of Nucleophilic Aromatic Substitution on Porphyrins

    Science.gov (United States)

    Rizvi, Waqar; Khwaja, Emaad; Siddiqui, Saim; Bhupathiraju, N. V. S. Dinesh K.; Drain, Charles Michael

    2018-01-01

    A physical organic chemistry experiment is described for second-year college students. Students performed nucleophilic aromatic substitution (NAS) reactions on 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)porphyrin (TPPF[subscript 20]) using three different nucleophiles. Substitution occurs preferentially at the 4-position ("para")…

  19. Synthesis and Reactions of Acenaphthenequinones-Part-2. The Reactions of Acenaphthenequinones

    Directory of Open Access Journals (Sweden)

    Mahmoud Shoukry

    2002-02-01

    Full Text Available The reactions of acenaphthenequinone and its derivatives with different nucleophiles, organic and inorganic reagents are reviewed. This survey also covers their oxidation and reduction reactions, in addition to many known reactions such as Friedel Crafts, Diels-Alder, bromination and thiolation.

  20. Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

    International Nuclear Information System (INIS)

    Adhikary, Keshab Kumar; Lee, Hai Whang

    2011-01-01

    Kinetic studies of the reactions of N-methyl-Y-α-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at 25.0 .deg. C. The Hammett plots for substituent X variations in the nucleophiles (log k N vs σ X ) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log k N vs pK a ) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log k N vs σ Y ) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant ρ XY values are all negative: ρ XY = -0.32 for X = Y = electron-donating: -0.22 for X = electron-withdrawing and Y = electron-donating: -1.80 for X = electron-donating and Y = electronwithdrawing: -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal (k H /k D > 1) for Y = electron-donating, while secondary inverse (k H /k D < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-α-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the α-carbon for Y = electronwithdrawing substituents

  1. Optimization studies concerning the direct nucleophilic fluorination of butyrophenone neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A; Hamacher, K; Schnitter, J; Stoecklin, G [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie 1 - Nuklearchemie

    1993-07-01

    Based on the direct nucleophilic aromatic substitution described previously for [[sup 18]F]N-methylspiperone the butyrophenone neuroleptics benperidol, droperidol, fluanisone and haloperidol were labelled with fluorine-18. The n.c.a. aromatic nucleophilic NO[sub 2] [yields] [sup 18]F substitution takes place in the presence of the moderately basic cryptate system consisting of Kryptofix 2.2.2., potassium oxalate and potassium carbonate. The one step labeling reaction was performed in different solvents and is equally successful in dimethylsulfoxide, dimethylformamide or dimethylacetamide yielding 25-35% (EOS) within a reaction time of 5-30 min in the range of 140-160[sup o]C at analytical activity levels. (author).

  2. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  3. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides

    Directory of Open Access Journals (Sweden)

    Magnus Liljenberg

    2013-04-01

    Full Text Available A computational approach using density functional theory to compute the energies of the possible σ-complex reaction intermediates, the “σ-complex approach”, has been shown to be very useful in predicting regioselectivity, in electrophilic as well as nucleophilic aromatic substitution. In this article we give a short overview of the background for these investigations and the general requirements for predictive reactivity models for the pharmaceutical industry. We also present new results regarding the reaction rates and regioselectivities in nucleophilic substitution of fluorinated aromatics. They were rationalized by investigating linear correlations between experimental rate constants (k from the literature with a theoretical quantity, which we call the sigma stability (SS. The SS is the energy change associated with formation of the intermediate σ-complex by attachment of the nucleophile to the aromatic ring. The correlations, which include both neutral (NH3 and anionic (MeO− nucleophiles are quite satisfactory (r = 0.93 to r = 0.99, and SS is thus useful for quantifying both global (substrate and local (positional reactivity in SNAr reactions of fluorinated aromatic substrates. A mechanistic analysis shows that the geometric structure of the σ-complex resembles the rate-limiting transition state and that this provides a rationale for the observed correlations between the SS and the reaction rate.

  4. The optimization of 18F-nucleophilic fluorination reaction and its application in synthesis of VMAT2 imaging tracer: [18F]AV-133

    International Nuclear Information System (INIS)

    Liu Yajing; Zhu Lin; Karl, P.; Qu Wenchao

    2010-01-01

    Objective: The nucleophilic introduction of n.c.a. [ 18 F]F- into alkanes by nucleophilic reaction is the main method of preparing 18 F-labelled radiopharmaceuticals, and the efficient and rapid reaction is important in 18 F-labelled radiopharmaceuticals. Method: Using 2-(3-substitute propoxy)naphthalene as model compound, the optimal reaction condition was achieved by comparing the different [ 18 F]fluorination condition: 1)different leaving groups (-OTs, -I, -Br and -Cl), 2) different [ 18 F]fluorination catalysts (Kryptofix222/K 2 CO 3 and TBAHCO 3 ), 3) different reaction solvent (ACN, DMSO and DMF), 4) [ 18 F]fluorination temperature (40, 50 and 60 degree C) and 5) reaction time. The radiochemical yields were analyzed by TLC and HPLC. VMAT2 imaging tracer [ 18 F]AV-133 was synthesized under the optimal conditions. Results: From the experiment results, the reation activity was the highest when using -OTs as the leaving group, followed by -I and -Br, -Clunder the [ 18 F]fluorination condition of using K222/K 2 CO 3 as catalyst and ACN as solvent. And also, the radiochemical yield raised as the reaction time and temperature increased. The higher temperature, the shorter time to reach the equilibrium. When changing the solvent from ACN to DMSO, the radiochemical yields were increased. On the contrary, the radiochemical yields were decreasing by using DMF. Comparing the catalyst K222/K 2 CO 3 with TBAHCO 3 , the [ 18 F] fluorination of -OTs gave a higher radiochemical yield in the presence of K222/K 2 CO 3 . So the optimized [ 18 F]fluorination reaction condition was that choosing -OTs as the leaving group, the [ 18 F]fluorination reaction was efficient and gave higher radiochemical yield catalyzed by K222/K 2 CO 3 in DMSO at high temperature. [ 18 F]fluorination of AV-244 was found to provide the VMAT2 imaging tracer [ 18 F]AV-133 in 80 ± 2% radiochemical yield after reaction at 120 degree C for 3 min under optimized conditions. Conclusion: We have described an

  5. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  6. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  7. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  8. The mechanism of the modified Ullmann reaction

    NARCIS (Netherlands)

    Sperotto, Elena; Klink, Gerard P.M. van; Koten, Gerard van; Vries, Johannes G. de

    2010-01-01

    The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols)

  9. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  10. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar

    2002-08-22

    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  11. Novel Reagents for Multi-Component Reactions

    Science.gov (United States)

    Wang, Yanguang; Basso, Andrea; Nenajdenko, Valentine G.; Gulevich, Anton V.; Krasavin, Mikhail; Bushkova, Ekaterina; Parchinsky, Vladislav; Banfi, Luca; Basso, Andrea; Cerulli, Valentina; Guanti, Giuseppe; Riva, Renata; Rozentsveig, Igor B.; Rozentsveig, Gulnur N.; Popov, Aleksandr V.; Serykh, Valeriy J.; Levkovskaya, Galina G.; Cao, Song; Shen, Li; Liu, Nianjin; Wu, Jingjing; Li, Lina; Qian, Xuhong; Chen, Xiaopeng; Wang, Hongbo; Feng, Jinwu; Wang, Yanguang; Lu, Ping; Heravi, Majid M.; Sadjadi, Samaheh; Kazemizadeh, Ali Reza; Ramazani, Ali; Kudyakova, Yulia S.; Goryaeva, Marina V.; Burgart, Yanina V.; Saloutin, Victor I.; Mossetti, Riccardo; Pirali, Tracey; Tron, Gian Cesare; Rozhkova, Yulia S.; Mayorova, Olga A.; Shklyaev, Yuriy V.; Zhdanko, Alexander G.; Nenajdenko, Valentine G.; Stryapunina, Olga G.; Plekhanova, Irina V.; Glushkov, Vladimir A.; Shklyaev, Yurii V.

    Ketenimines are a class of versatile and highly reactive intermediates that can participate in a variety of organic reactions, such as nucleophilic additions, radical additions, [2 + 2] and [2 + 4] cycloadditions, and sigmatropic rearrangements. In this presentation, we report on a series of multi-component reactions that involve a ketenimine intermediate. These reactions could furnish diverse heterocyclic compounds, including functionalized iminocoumarin, iminodihydroqunolines, iminothiochromens, pyrrolines, isoquinolines, pyridines, β-lactams, imino-1,2-dihydrocoumarins, and benzimidazoles.

  12. Nucleophilic difluoromethylation and difluoromethylenation of aldehydes

    Czech Academy of Sciences Publication Activity Database

    Beier, Petr; Alexandrova, Anastasia; Zibinsky, M.; Prakash, G. K. S.

    2008-01-01

    Roč. 64, č. 49 (2008), s. 10977-10985 ISSN 0040-4020 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : difluoromethylation * difluoromethylenation * phosphonate * nucleophilic addition Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  13. Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation.

    Science.gov (United States)

    Ganiek, Maximilian A; Becker, Matthias R; Berionni, Guillaume; Zipse, Hendrik; Knochel, Paul

    2017-08-01

    An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Easy access to nucleophilic boron through diborane to magnesium boryl metathesis

    Science.gov (United States)

    Pécharman, Anne-Frédérique; Colebatch, Annie L.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F.; Weetman, Catherine

    2017-04-01

    Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B-B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,N'-di-isopropyl carbodiimide and by density functional theory.

  15. Alkoxide-induced nucleophilic trifluoromethylation using diethyl trifluoromethylphosphonate

    Czech Academy of Sciences Publication Activity Database

    Cherkupally, Prabhakar; Beier, Petr

    2010-01-01

    Roč. 51, č. 2 (2010), s. 252-255 ISSN 0040-4039 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : trifluoromethylation * phosphonate * nucleophilic addition Subject RIV: CC - Organic Chemistry Impact factor: 2.618, year: 2010

  16. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  17. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    Science.gov (United States)

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  18. Regioselective Nucleophilic Ring Opening of Epoxides and Aziridines derived from Homoallylic Alcohols

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Groth, Thomas

    1997-01-01

    The regioselectivity of nucleophilic ring opening of some 3,4-epoxy and 3,4-aziridino alcohols has been studied. The nucleophiles chosen were complex hydrides (LiAlH4, Red-Al and DIBAL) and Lipshutz- or Gilman-type organocuprate reagents. The C-4 substituent in the substrates was varied in order...... to study steric and electronic effects on the ring opening reactions. For alkyl substituents at C-4, most of the results can be explained on the basis of intramolecular delivery of the nucleophile to C-3 via a six-membered transition state, leading to 1,4-diols or 1,4-amino alcohol derivatives. In general......, the epoxy alcohols gave poorer regioselectivity than the N-tosyl aziridino alcohols, for which selectivities of >95:5 were routinely obtained. The activating effect of a phenyl group at C-4 led to a switch in regiochemistry, with the 1,3-diol or 1,3-amino alcohol derivative as the major product. (C) 1997...

  19. Electronic forces as descriptors of nucleophilic and electrophilic regioselectivity and stereoselectivity.

    Science.gov (United States)

    Liu, Shubin; Rong, Chunying; Lu, Tian

    2017-01-04

    One of the main tasks of theoretical chemistry is to rationalize computational results with chemical insights. Key concepts of such nature include nucleophilicity, electrophilicity, regioselectivity, and stereoselectivity. While computational tools are available to predict barrier heights and other reactivity properties with acceptable accuracy, a conceptual framework to appreciate above quantities is still lacking. In this work, we introduce the electronic force as the fundamental driving force of chemical processes to understand and predict molecular reactivity. It has three components but only two are independent. These forces, electrostatic and steric, can be employed as reliable descriptors for nucleophilic and electrophilic regioselectivity and stereoselectivity. The advantages of using these forces to evaluate molecular reactivity are that electrophilic and nucleophilic attacks are featured by distinct characteristics in the electrostatic force and no knowledge of quantum effects included in the kinetic and exchange-correlation energies is required. Examples are provided to highlight the validity and general applicability of these reactivity descriptors. Possible applications in ambident reactivity, σ and π holes, frustrated Lewis pairs, and stereoselective reactions are also included in this work.

  20. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  1. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Nigam, Manisha; Rush, Brittney; Patel, Jay; Castillo, Raul; Dhar, Preeti

    2016-01-01

    A green, aza-Michael reaction is described that can be used to teach undergraduate students conjugate addition of nitrogen nucleophile to an a,ß-unsaturated ester. Students analyze spectral data of the product obtained from the assigned reaction to determine product structure and propose the mechanism of its formation. The experiment requires…

  2. The synthesis of no-carrier-added DL-4-[18F]fluorodeprenyl via the nucleophilic aromatic substitution reaction

    International Nuclear Information System (INIS)

    Plenevaux, Alain; Guillaume, Marcel

    1991-01-01

    No-carrier-added DL-α-methyl-β-4-[ 18 F]fluorophenyl-N-methyl-N-propynylethylamine (DL-4-[ 18 F]fluorodeprenyl) was synthesized via a 3-step procedure. The overall yield was 11%, the synthesis time was 90 min and the specific activity >0.57 Ci/μmol (end of synthesis). This synthesis approach, the conversion of an aromatic aldehyde to a homologous methyl ketone, extends the flexibility of the nucleophilic aromatic substitution reaction by applying it to the synthesis of radiotracers which do not bear electron-withdrawing activating groups on the aromatic ring. The tissue distribution of DL-4-[ 18 F]fluorodeprenyl in mice at 1, 10 and 50 min was also measured and showed that metabolic defluorination was not significant. Clearance or radioactivity from brain after injection of DL-4-[ 18 F]fluorodeprenyl was more rapid than that previously observed for [ 11 C]L-deprenyl. (author)

  3. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase S(N)2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms.

    Science.gov (United States)

    Manikandan, Paranjothy; Zhang, Jiaxu; Hase, William L

    2012-03-29

    Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.

  4. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  5. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles

    DEFF Research Database (Denmark)

    Hansen, Jonas; Diness, Frederik; Meldal, Morten Peter

    2016-01-01

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity...... directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed....

  6. Energy landscapes of nucleophilic substitution reactions: a comparison of density functional theory and coupled cluster methods

    NARCIS (Netherlands)

    Swart, M.; Sola, M.; Bickelhaupt, F.M.

    2007-01-01

    We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (S

  7. Nucleophilic reactions of hydrazido(2-) complexes of molybdenum and tungsten with succinyl dichloride and phenyl isocyanate

    International Nuclear Information System (INIS)

    Iwanami, Kiyotaka; Mizobe, Yasushi; Takahashi, Tamotsu; Kodama, Teruyuki; Uchida, Yasuzo

    1981-01-01

    Nucleophilic attack of the WNNH 2 group in the hydrazido(2-) complex [WF(NNH 2 )(dpe) 2 ][BF 4 ] (dpe = Ph 2 PCH 2 CH 2 PPh 2 ) on succinyl dichloride gives a novel ethanedioylhydrazido(2-) complex, [WF(NNCOCH 2 CH 2 CO)(dpe) 2 ][BF 4 ]. X-Ray structural analysis shows that the carbon, nitrogen, and oxygen atoms of the ethanedioylhydrazido(2-) ligand lie nearly in the same plane, indicating sp 2 character of the nitrogen atom bearing the two carbonyl groups. Phenyl isocyanate also undergoes nucleophilic attack by the hydrazido(2-) complex [MBr(NNH 2 )(dpe) 2 ]Br (M = Mo or W) to yield the phenylsemicarbazido(2-) type complex, [MBr(NNHCONHPh)(dpe) 2 ]Br. Treatment of the semicarbazido(2-) complex with triethylamine gives a new diazenido complex [MBr(NNCONHPh)(dpe) 2 ]. (author)

  8. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    Science.gov (United States)

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  10. Organic Chemistry Students' Ideas about Nucleophiles and Electrophiles: The Role of Charges and Mechanisms

    Science.gov (United States)

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2015-01-01

    Organic chemistry students struggle with reaction mechanisms and the electron-pushing formalism (EPF) used by practicing organic chemists. Faculty have identified an understanding of nucleophiles and electrophiles as one conceptual prerequisite to mastery of the EPF, but little is known about organic chemistry students' knowledge of nucleophiles…

  11. Abstraction of methyl from neutral Fischer-type carbene complexes: A new site for nucleophilic attack

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, L.M.; Atwood, J.D. [State Univ. of New York, Buffalo, NY (United States)

    1997-02-04

    Reactions of Fischer-type carbene complexes, M(CO){sub 5}(C(OMe)pH) (M = Cr, W), with metal carbonyl anions (M`{sup -} = CpFe(CO){sub 2}{sup -@}, Re(CO){sub 5}{sup -}, Mn(CO){sub 4}PPh{sub 3}{sup -}, Co(CO){sub 3}PPh{sub 3}{sup -}, Cp{sup *}Cr(CO){sub 3}{sup -}, CpMo(CO){sub 3}{sup -}) result in demethylation of the carbene complexes. The products are M(CO){sub 5}C(O)Ph{sup -} and M`-Me, characterized by infrared and NMR spectroscopy. A slower rate for reaction with W(CO){sub 5}(C(OEt)Ph) in comparison to the methyl analogue is consistent with nucleophilic attack of the metal carbonyl anion on the methyl of the methoxy group of the carbene. This is a new type of nucleophilic attack of a Fischer-type carbene. 22 refs., 1 fig., 1 tab.

  12. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution.

    Science.gov (United States)

    Montoya, Leticia A; Pearce, Taylor F; Hansen, Ryan J; Zakharov, Lev N; Pluth, Michael D

    2013-07-05

    Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications.

  13. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges.

    Science.gov (United States)

    Castoldi, Laura; Monticelli, Serena; Senatore, Raffaele; Ielo, Laura; Pace, Vittorio

    2018-05-31

    The transfer of a reactive nucleophilic CH2X unit into a preformed bond enables the introduction of a fragment featuring the exact and desired degree of functionalization through a single synthetic operation. The instability of metallated α-organometallic species often poses serious questions regarding the practicability of using this conceptually intuitive and simple approach for forming C-C or C-heteroatom bonds. A deep understanding of processes regulating the formation of these nucleophiles is a precious source of inspiration not only for successfully applying theoretically feasible transformations (i.e. determining how to employ a given reagent), but also for designing new reactions which ultimately lead to the introduction of molecular complexity via short experimental sequences.

  14. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31 ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant - others:GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.213, year: 2015

  15. Onium ions. XVI. Hydrogen--deuterium exchange accompanying the cleavage of ammonium (tetradeuterioammonium) trifluoroacetate by lithium deuteride (hydride) indicating Sn2 like nucleophilic displacement at quaternary nitrogen through pentacoordinated NH5

    International Nuclear Information System (INIS)

    Olah, G.A.; Donovan, D.J.; Shen, J.; Klopman, G.

    1975-01-01

    The reactions of ammonium trifluoroacetate and lithium hydride, of ammonium trifluoroacetate and lithium deuteride, and of tetradeuteroammonium trifluoroacetate and lithium hydride were studied in an attempt to prove experimentally nucleophilic displacement through the formation of pentacoordinated NH 5 . Significant isotopic scramblings were observed in the reaction products. An analysis of possible side reactions indicated that the most reasonable explanation for the reaction products obtained is the attack of D - on the quarternary hydrogen of NH 4 + in an SN2-like fashion causing exchange to occur via pentacoordinated NH 4 D. The possibility of a real pentacoordinated intermediate was also considered. CNDO/2 calculations show that a nucleophilic attack on hydrogen is favored, but the alternative attack on nitrogen can not be dismissed because of the experimental data. The reaction of NF 4 + SbF 6 - and LiF could indicate the possibility of nucleophilic attack on nitrogen. (U.S.)

  16. Tandem ring-closing metathesis/isomerization reactions for the total synthesis of violacein

    DEFF Research Database (Denmark)

    Petersen, Mette Terp; Nielsen, Thomas Eiland

    2013-01-01

    A series of 5-substituted 2-pyrrolidinones was synthesized through a one-pot ruthenium alkylidene-catalyzed tandem RCM/isomerization/nucleophilic addition sequence. The intermediates resulting from RCM/isomerization showed reactivity toward electrophiles in aldol condensation reactions which...

  17. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    Science.gov (United States)

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.

  18. Enantioselective conjugate addition of silylketene acetals to beta-enamidomalonates. Synthesis of beta-amino acid derivatives.

    Science.gov (United States)

    Sibi, Mukund P; Chen, Jianxie

    2002-08-22

    [reaction: see text] Conjugate addition of silylketene acetals or enolsilanes to enamidomalonates proceeds with excellent chemical efficiency and good selectivity using Cu(OTf)2 and a chiral bisoxazoline. The effect of the Lewis acid, ligand, the N-acyl substituent, and the nucleophile on yield and selectivity for the addition product have been evaluated.

  19. Aliphatic Nucleophilic Radio-fluorination

    International Nuclear Information System (INIS)

    Roeda, D.; Dolle, F.

    2010-01-01

    In this review we are looking at some aspects of nucleophilic aliphatic radio-fluorination, notably the labelled fluoride source, design aspects, the leaving group and the solvent. It should be clear that there is more to this branch of radiolabelling than one would suspect from the frequently used standard tosylate replacement with kryptofix/[ 18 F]fluoride in acetonitrile or DMSO. Competitive elimination can be a serious problem that can affect both yield and purification. De-protection of sensitive groups after radiolabelling and its possible side reactions can complicate purification. The right choice of leaving group and protecting groups may be crucial. Newer developments such as the use of tertiary alcohols or ionic liquids as solvents, long-chain poly-fluorinated sulphonate leaving groups facilitating fluorous solid phase extraction, or immobilisation of the precursor on a solid phase support may help to solve these problems, for example the longstanding problems with [ 18 F]FLT, whereas older concepts such as certain cyclic reactive entities for ring opening or even an abandoned reagent as [ 18 F]DAST should not be forgotten. (authors)

  20. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

    Science.gov (United States)

    Zhu, Feng; Rodriguez, Jacob; Yang, Tianyi; Kevlishvili, Ilia; Miller, Eric; Yi, Duk; O'Neill, Sloane; Rourke, Michael J; Liu, Peng; Walczak, Maciej A

    2017-12-13

    Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd 2 (dba) 3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric

  1. Noncanonical Reactions of Flavoenzymes

    Directory of Open Access Journals (Sweden)

    Pablo Sobrado

    2012-11-01

    Full Text Available Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  2. Theoretical studies of the nucleophilic substitution of halides and amine at a sulfonyl center.

    Science.gov (United States)

    Sung, Dae Dong; Kim, Tae Joon; Lee, Ikchoon

    2009-06-25

    Gas-phase nucleophilic substitution reactions, F(-) + CH(3)SO(2)F, Cl(-) + CH(3)SO(2)Cl, Cl(-) + CH(3)SO(2)F, and NH(3) + CH(3)SO(2)Cl, have been investigated at the B3LYP/6-311+G** and MP2/6-31+G* levels of theory. A very shallow well for the reaction intermediate in a triple-well potential energy surface (PES) was observed for the identity fluoride exchange, but double well PESs were obtained for the other three reactions with three different PES profiles. NBO analyses of the transition states showed substantial charge transfer interactions in all cases which provided a much larger amount of stabilization energy compared with the corresponding species at the carbon center of methyl halides. This difference is primarily caused by the strong electropositive nature of the sulfur center. The F-S-F axial linkage in the distorted TBP type intermediate in the identity fluoride exchange reaction exhibited a weak three-center, four-electron omega-bonding, which is considered to provide stability of the intermediate. All the reactant (RC) and product complexes (PC) have Cs symmetry. The symmetry plane bisects angles HCH (of methyl group), OSO (of sulfonyl group), and HNH (of ammonia). Vicinal charge transfer interactions between the two out-of-plane C-H, S-O, and N-H bonds provide extra stabilization to the ion-dipole complexes together with H-bond formation of in-plane H atom with the nucleophile and/or leaving group.

  3. Nucleophilic difluoromethylenation of aldehydes and ketones using diethyl difluoro(trimethylsilyl)methylphosphonate

    Czech Academy of Sciences Publication Activity Database

    Alexandrova, Anastasia; Beier, Petr

    2009-01-01

    Roč. 130, č. 5 (2009), s. 493-500 ISSN 0022-1139 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : phosphonates * phosphates * nucleophilic additions * difluoromethylene Subject RIV: CC - Organic Chemistry Impact factor: 1.730, year: 2009

  4. Solid-Phase Reactions of Iminium Ions: Cyclized Peptide Derivatives

    DEFF Research Database (Denmark)

    Wang, Yuanyuan

    formation of N,N’-aminals by nucleophilic attack of the peptide backbone is reversible under strongly acidic conditions and the N,N’-aminal is likely to be the kinetic product of many INCIC reactions. In addition, the N,N’-aminals are stable in the absence of acid but could be converted to the THIQ...... derivatives in solution phase under acid conditions in the presence of an active C-nucleophile in the side chain. The high yielding nature of the aminal formation is confirmed by solution phase synthesis. The introduced azide and alkyne residues in the side chain of N,N’-aminal products were further......BB may undergo auto-oxidation to quinazoline-2,4-diones in the absence of a suitable nucleophile on the side chain or backbone of the peptide (Chapter 4). The structure is confirmed by comparison with products obtained from solution-phase synthesis under the same conditions, one of which was confirmed...

  5. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  6. Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications.

    Science.gov (United States)

    Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A

    1999-06-11

    The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.

  7. Probing the reactivation process of sarin-inhibited acetylcholinesterase with α-nucleophiles: hydroxylamine anion is predicted to be a better antidote with DFT calculations.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Lo, Rabindranath; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2011-08-01

    Inactivation of acetylcholinesterase (AChE) due to inhibition by organophosphorus (OP) compounds is a major threat to human since AChE is a key enzyme in neurotransmission process. Oximes are used as potential reactivators of OP-inhibited AChE due to their α-effect nucleophilic reactivity. In search of more effective reactivating agents, model studies have shown that α-effect is not so important for dephosphylation reactions. We report the importance of α-effect of nucleophilic reactivity towards the reactivation of OP-inhibited AChE with hydroxylamine anion. We have demonstrated with DFT [B3LYP/6-311G(d,p)] calculations that the reactivation process of sarin-serine adduct 2 with hydroxylamine anion is more efficient than the other nucleophiles reported. The superiority of hydroxylamine anion to reactivate the sarin-inhibited AChE with sarin-serine adducts 3 and 4 compared to formoximate anion was observed in the presence and absence of hydrogen bonding interactions of Gly121 and Gly122. The calculated results show that the rates of reactivation process of adduct 4 with hydroxylamine anion are 261 and 223 times faster than the formoximate anion in the absence and presence of such hydrogen bonding interactions. The DFT calculated results shed light on the importance of the adjacent carbonyl group of Glu202 for the reactivation of sarin-serine adduct, in particular with formoximate anion. The reverse reactivation reaction between hydroxylamine anion and sarin-serine adduct was found to be higher in energy compared to the other nucleophiles, which suggests that this α-nucleophile can be a good antidote agent for the reactivation process. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  9. A reaction-based fluorescent sensor for detection of cyanide in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shan-Teng; Sie, Yi-Wun [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China); Wan, Chin-Feng [School of Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan (China); Wu, An-Tai, E-mail: [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China)

    2016-05-15

    A simple boronic acid derivative was utilized as a reaction-based receptor for CN{sup −} in aqueous solution. The receptor showed a selective and sensitive response to CN{sup −} over other various anions via nucleophilic addition of CN{sup −} to the imine moiety of the boronic-based receptor.

  10. Organic Chemistry Students' Fragmented Ideas about the Structure and Function of Nucleophiles and Electrophiles: A Concept Map Analysis

    Science.gov (United States)

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2016-01-01

    Organic chemistry students struggle with multiple aspects of reaction mechanisms and the curved arrow notation used by organic chemists. Many faculty believe that an understanding of nucleophiles and electrophiles, among other concepts, is required before students can develop fluency with the electronpushing formalism (EPF). An expert concept map…

  11. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    Science.gov (United States)

    Kant, Ruchir

    2014-01-01

    Summary The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions. PMID:24991276

  12. Nucleophile-directed selectivity towards linear carbonates in the niobium pentaethoxide-catalysed cycloaddition of CO2 and propylene oxide

    KAUST Repository

    Dutta, Barnali

    2014-01-01

    Homoleptic Nb-complexes combined with selected organic nucleophiles generate very active catalytic systems for the cycloaddition of propylene oxide and CO2 under ambient conditions. An unprecedented reaction pathway towards an acyclic organic carbonate is observed when extending the study to [Nb(OEt)5] in combination with 4-dimethylamino-pyridine (DMAP) or tetra-n-butylammonium bromide (TBAB). Mechanistic insights of the reaction are provided based on experimental and spectroscopic evidences. This journal is © the Partner Organisations 2014.

  13. Kinetic study on S_NAr reactions of 1-(Y-Substituted-phenoxy)-2,4-dinitrobenzenes with azide ion: Effect of changing nucleophile from hydroxide to zzide ion on reaction mechanism and reactivity

    International Nuclear Information System (INIS)

    Seo, Hyeon Ok; Kim, Min Young; Han, So Yeop; Um, Ik Hwan

    2015-01-01

    Second-order rate constants (k_N_3_−) for SNAr reactions of 1-(Y-substituted-phenoxy)-2,4-dinitrobenzenes (2a–2h) with math formula in 80 mol % H_2O/20 mol % DMSO at 25.0 ± 0.1 °C have been measured spectrophotometrically. The Brønsted-type plot is linear with β"l"g = −0.38. The Hammett plots correlated with math formula and math formula constants exhibit highly scattered points. In contrast, the Yukawa–Tsuno plot results in an excellent linear correlation with ρ_Y = 1.02 and r = 0.51, indicating that a negative charge develops partially on the O atom of the leaving Y-substituted-phenoxy moiety in the transition state. Accordingly, the reactions have been concluded to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs in the rate-determining step. Comparison of k_N_3_− with the k_O_H_− values reported previously for the corresponding reactions with OH"− has revealed that math formula is only 6- to 26-fold less reactive than OH"− toward substrates 2a–2h, although the former is over 11 pK_a units less basic than the latter. Solvation and polarizability effects have been suggested to be responsible for the unusual reactivity shown by math formula and OH"−. Effects of changing nucleophile from OH"− to N_3"− on reaction mechanism and reactivity are discussed in detail

  14. Computer-assisted mechanistic evaluation of organic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gushurst, A.J.

    1988-01-01

    CAMEO, an interactive computer program which predicts the products of organic reactions given starting materials and conditions, has been refined and extended in the area of base-catalyzed and nucleophilic processes. The present capabilities of the program are outlined including brief discussion on the major segments in CAMEO: graphics, perception, and reaction evaluation. The implementation of general algorithms for predicting the acidities of a vast number of organic compounds to within 2 pK{sub a} units in dimethylsulfoxide and water are then described, followed by a presentation of the reactivity rules used by the program to evaluate nucleophilc reactions. Finally, a treatment of sulfur and phosphorus ylides, iminophosphoranes, and P=X-activated anions is given illuminating the various competitions available for these reagents, such as between proton transfer and addition, 1,2- and 1,4-addition, and the Peterson, Wittig, and Horner-Emmons olefination reactions.

  15. Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene with alcohols

    Directory of Open Access Journals (Sweden)

    Katrina Tait

    2016-10-01

    Full Text Available Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene derivatives using alcohol nucleophiles were investigated. The optimal conditions were found to be 10 mol % PdCl2(CH3CN2 in methanol, offering yields up to 92%. The reaction was successful using primary, secondary and tertiary alcohol nucleophiles and was compatible with a variety of substituents on cyclopropanated oxabenzonorbornadiene. With unsymmetrical C1-substituted cyclopropanated 7-oxabenzonorbornadienes, the regioselectivity of the reaction was excellent, forming only one regioisomer in all cases.

  16. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  17. Density functional theory studies on electronic properties of thiophene s oxides as aromatic dienophiles for reactivity prediction in diels-alder reactions

    International Nuclear Information System (INIS)

    Banjo, S.

    2013-01-01

    The reactivity of thiophene S-oxides was discussed with special emphasis on the use of thiophene S-oxides as dienophiles in Diels-Alder type reactions. The omega values obtained for thiophene S-oxide (TO) with electron-donating group (-CH/sub 3/) increased the nucleophilicity power whereas substitution with electron-withdrawing groups (such as -NO/sub 2/ and -CO/sub 2/CH/sub 2/CH/sub 3/) increased the electrophilicity power, indicating an increase of reactivity towards a nucleophiles. The higher the value of delta omega the more favourable the D-A process, therefore apart from (4+2) addition reactions of these TO as diene with the typical dienophiles like 1,2-dicyanoethene and 1,2-dicyanoethene, it could be possible for TO with strong electron withdrawing substituents to serve as dienophile, e.g. heterocycles Ie and If. Also, from the value of delta omega heterocycle 1d could involve in (4+2) addition reactions with heterocyles 1e and If. (author)

  18. Redox and Lewis acid relay catalysis: a titanocene/zinc catalytic platform in the development of multicomponent coupling reactions.

    Science.gov (United States)

    Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L

    2014-12-19

    A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.

  19. A comparative study on the effect of solvent on nucleophilic fluorination with [18F]fluoride. Protic solvents as co-solvents in SN2 and SNAr reactions

    International Nuclear Information System (INIS)

    Koivula, T.; Simecek, J.; Jalomaeki, J.; Helariutta, K.; Airaksinen, A.J.

    2011-01-01

    The effect of solvent on nucleophilic substitution with cyclotron-produced [ 18 F]fluoride was studied in polar aprotic (CH 3 CN and DMF) and protic solvent (t-BuOH and t-amyl alcohol) mixtures (CH 3 CN/co-solvent, 2:8) in a series of model compounds, 4-(R 1 -methyl)benzyl R 2 -benzoates, using a K2.2.2/[ 18 F]KF phase transfer system (R 1 = -Cl, -OMs or -OH; R 2 = -Cl, -I or -NO 2 ). 18 F-fluorination of compounds 1-3, with chloride or mesylate as a leaving group in the benzylic position (R 1 ), afforded the desired 4-([ 18 F]fluoromethyl)benzyl analogues in all solvents during 15 min reaction time. The highest radiochemical yields (RCY) in all the studied reaction temperatures (80, 120 and 160 C) were achieved in CH 3 CN. Radiochemical yields in protic solvents were comparable to RCY in CH 3 CN only with the sulfonate ester 3 as a starting material. 18 F-Fluorination of the benzylic halides 1 and 2 was not promoted in the same extent; in addition, labelled side-products were detected at higher reaction temperatures. Radiofluorination in tert-alcohols was also studied using [ 18 F]CsF with and without added phase transfer catalyst, resulting in both conditions lower RCY when compared to K2.2.2/[ 18 F]KF system. Protic solvents were not able to promote aromatic 18 F-fluorination. 18 F-Fluorination of compound 5, having para-activated nitro group in the aromatic position (R 2 ), failed in tert-alcohols even at the highest temperature, but it was labelled successfully in DMF and to some extent in CH 3 CN. (orig.)

  20. Reactivity of polychlorinated biphenyls in nucleophilic and electrophilic substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunova, Tatyana I., E-mail: [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation); Subbotina, Julia O. [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg 620002 (Russian Federation); Saloutin, Viktor I.; Chupakhin, Oleg N. [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation)

    2014-08-15

    Graphical abstract: - Highlights: • Quantum chemical calculations were carried out for PCBs congeners. • Calculated descriptors were used to explain the PCBs reactivity in S{sub N} and S{sub E} substitutions. • Obtained data were used to estimate the PCBs reactivity in the S{sub N} reactions. • Calculated descriptors were insufficient to explain the PCBs reactivity in the S{sub E} reactions. • New neutralization methods of the large-capacity PCBs were discussed. - Abstract: To explain the chemical reactivity of polychlorinated biphenyls in nucleophilic (S{sub N}) and electrophilic (S{sub E}) substitutions, quantum chemical calculations were carried out at the B3LYP/6-31G(d) level of the Density Functional Theory in gas phase. Carbon atomic charges in biphenyl structure were calculated by the Atoms-in-Molecules method. Chemical hardness and global electrophilicity index parameters were determined for congeners. A comparison of calculated descriptors and experimental data for congener reactivity in the S{sub N} and S{sub E} reactions was made. It is shown that interactions in the S{sub N} mechanism are reactions of the hard acid–hard base type, these are the most effective in case of highly chlorinated substrates. To explain the congener reactivity in the S{sub E} reactions, correct descriptors were not established. The obtained results can be used to carry out chemical transformations of the polychlorinated biphenyls in order to prepare them for microbiological destruction or preservation.

  1. Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides.

    Science.gov (United States)

    Qiu, Guanyinsheng; Wu, Jie

    2016-02-01

    As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectroscopic Evidence for Covalent Binding of Sulfadiazine to Natural Soils via 1,4-nucleophilic addition (Michael Type Addition) studied by Spin Labeling ESR

    Science.gov (United States)

    Aleksandrova, Olga

    2015-04-01

    with different polarity. As shown by the spin labeling ESR experiment, molecules modeling SDZ were promptly bound to non-hydrolysable network of soil organic matter only via the aromatic amines that was accompanied by a prompt enlargement of humic particles binding aromatic amines, whereas binding of decomposition products of SDZ to humic acids of soil via the aliphatic amines was not observable. The ESR spectra obviously showed a single-phase process of covalent binding of the aromatic amines. Repeated washouts of labeled soil samples using distil water and ultrafiltration through the membrane of 5000 MWCO PES confirmed irreversible binding of the aromatic amines, and showed that via the aliphatic amines, binding of SDZ or decomposition products of SDZ to soil might also occur but reversibly and only to small soil molecules, which don't enter into the composition of non-hydrolysable part of soil organic matter. SL ESR experiments of different soils at the presence of Laccase highlighted that covalent binding of the aromatic amines to humic particles occurred in the specific hydrophobic areas of soil found as depleted in oxygen. All measured data evidenced that first, SDZ might be decomposed that allowed for measuring the same change of a paramagnetic signal of soil organic matter influenced by both aromatic and aliphatic amines as in the experiment of the interaction of soil with SDZ. Second, a decomposition product of SDZ with the aromatic amine might be bound to non-hydrolysable parts of soil organic matter under specific anaerobic conditions only via 1,4 - nucleophilic addition, Michael-type addition. Gulkowska, A., Thalmann, B., D., Hollender, J., & Krauss, M. (2014). Chemosphere, 107, 366 - 372. Müller, T., Rosendahl, I., Focks, A., Siemens, J., Klasmeier, J., & Matthies. (2013). Environmental Pollution, 172,180 - 185. Nowak, K.M., Miltner, A., Gehre, M., Schaeffer, A., & Kaestner, M. (2011). Environmental Science & Technology 45, 999 - 1006. Weber, E.J., Spidle

  3. Synthesis and structure of aromatic and heterocyclic tellurium compounds 33. Synthesis of [2-(aryltelluro)vinyl]aldehydes and ketones and stereochemistry of nucleophilic substitution under vinyl atom of carbon

    International Nuclear Information System (INIS)

    Sadekov, I.D.; Rivkin, B.B.; Zakharov, A.V.; Minkin, V.I.

    1996-01-01

    By means of interaction of (2-vinylchlorida) carbonyl compounds and (2-acylvinyl) triethylammonium chlorides and arenetellurolate-anions certain, [2-(aryltelluro)vinyl]ketones and [2-(aryltelluro)vinyl]aldehydes have been synthesized, while by means of reaction between 2-aroylvinyl chlorides and Li 2 Te some di(2-aroylvinyl)tellurides have been prepared. Interaction of (2-vinylchloride)ketones with arenetellurolate-anions always gives rise to Z-isomers of [2-(aryltelluro)vinyl]ketones as a result of stabilization of intermediate carbanion by intramolecular coordination O→Te. Nucleophilic addition of arenetellurolate-anions to α-acetylene aldehydes and ketones occurs as trans-addition. 36 refs., 2 figs., 1 tab

  4. Synthesis and reactivity of novel sulfur pentafluorides-Effect of the SF5 group on reactivity of nitrobenzenes in nucleophilic substitution

    Czech Academy of Sciences Publication Activity Database

    Beier, Petr

    2017-01-01

    Roč. 192, č. 2 (2017), s. 212-215 ISSN 1042-6507. [International Symposium on the Organic Chemistry of Sulfur (ISOCS) /27./. Jena, 26.07.2016-29.07.2016] Institutional support: RVO:61388963 Keywords : nucleophilic substitution * sulfur * fluorine * reaction rate Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 0.809, year: 2016

  5. Deuterium secondary isotope kinetic effects in imine formation reactions

    International Nuclear Information System (INIS)

    Amaral, L. do; Rossi, M.H.

    1986-01-01

    The kinetic α-deuterium isotope effects, K D /K H , for reaction mechanisms is studied. The reaction of pH function to m-bromobenzaldehyde, semicarbazide nucleophile, methoxy-amine and hydroxylamine are analysed. (M.J.C.) [pt

  6. Allergic and immunologic reactions to food additives.

    Science.gov (United States)

    Gultekin, Fatih; Doguc, Duygu Kumbul

    2013-08-01

    For centuries, food additives have been used for flavouring, colouring and extension of the useful shelf life of food, as well as the promotion of food safety. During the last 20 years, the studies implicating the additives contained in foods and medicine as a causative factor of allergic reactions have been proliferated considerably. In this review, we aimed to overview all of the food additives which were approved to consume in EU and find out how common and serious allergic reactions come into existence following the consuming of food additives.

  7. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.

    Science.gov (United States)

    Tay, Nicholas E S; Nicewicz, David A

    2017-11-15

    Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.

  8. Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum

    DEFF Research Database (Denmark)

    Udatha, D.B.R.K. Gupta; Madsen, Karina Marie; Panagiotou, Gianni

    2015-01-01

    The catalytic residues in carbohydrate esterase enzyme families constitute a highly conserved triad: serine, histidine and aspartic acid. This catalytic triad is generally located in a very sharp turn of the protein backbone structure, called the nucleophilic elbow and identified by the consensus...... sequence GXSXG. An esterase from Sorangium cellulosum Soce56 that contains five nucleophilic elbows was cloned and expressed in Escherichia coli and the function of each nucleophilic elbowed site was characterized. In order to elucidate the function of each nucleophilic elbow, site directed mutagenesis....... To our knowledge, this is the first report presenting the role of multiple nucleophilic elbows in the catalytic promiscuity of an esterase. Further structural analysis at protein unit level indicates the new evolutionary trajectories in emerging promiscuous esterases....

  9. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    Science.gov (United States)

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  10. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  11. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  12. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  13. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna

    2012-06-05

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna; Luxenhofer, Robert

    2012-01-01

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A new reactivity mode for the diazo group: diastereoselective 1,3-aminoalkylation reaction of β-amino-α-diazoesters to give triazolines.

    Science.gov (United States)

    Kuznetsov, Alexey; Gulevich, Anton V; Wink, Donald J; Gevorgyan, Vladimir

    2014-08-18

    A novel mode of reactivity for the diazo group, the 1,3-addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β-amino-α-diazoesters to form tetrasubstituted 1,2,3-triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au-catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    Science.gov (United States)

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    NARCIS (Netherlands)

    Buurma, NJ; Blandamer, MJ; Engberts, JBFN; Buurma, Niklaas J.

    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight

  18. Platinum Catalyzed Ring-Opening of 1,2-Cyclopropanated Sugars with O-Nucleophiles

    DEFF Research Database (Denmark)

    Beyer, Jürgen; Skaanderup, Philip Robert; Madsen, Robert

    1999-01-01

    In the presence of a catalytic amount of Zeise's dimer 1,2-cyclopropanated sugars undergo regioselective ring-opening at C-1 with O-nucleophiles including alcohols, phenols and water to produce 2-C-branched carbohydrates.......In the presence of a catalytic amount of Zeise's dimer 1,2-cyclopropanated sugars undergo regioselective ring-opening at C-1 with O-nucleophiles including alcohols, phenols and water to produce 2-C-branched carbohydrates....

  19. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: Assessing the dual role of the nucleophilic co-catalysts

    KAUST Repository

    D'Elia, Valerio

    2014-07-23

    A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4-dimethylaminopyridine (DMAP) or tetra-n-butylammonium bromide (NBu4Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reactions of carbonyl compounds with α,β-unsaturated nitriles as a convenient pathway to carbo- and heterocycles

    International Nuclear Information System (INIS)

    Sharanin, Yu A; Goncharenko, M P; Litvinov, Victor P

    1998-01-01

    Published data on the methods for synthesis of carbo- and heterocyclic compounds based on reactions of α,β-unsaturated nitriles with carbonyl compounds and activated phenols are surveyed. It is demonstrated that all these reactions occur via nucleophilic addition of the carbanion generated from a carbonyl compound to the double bond of an unsaturated nitrile (the Michael reaction). The main routes of transformation of the adducts into carbo- and heterocyclic compounds are considered. The methods for regioselective preparation of fused 4H-pyrans or 1,4-dihydropyridines by varying conditions of cyclisation of Michael adducts are discussed. The bibliography includes 249 references.

  1. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    Science.gov (United States)

    Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2015-05-01

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an SN2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the SN2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the SN2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction.

  2. Oxidative N-Heterocyclic Carbene-Catalyzed γ-Carbon Addition of Enals to Imines: Mechanistic Studies and Access to Antimicrobial Compounds.

    Science.gov (United States)

    Zheng, Peng-Cheng; Cheng, Jiajia; Su, Shihu; Jin, Zhichao; Wang, Yu-Huang; Yang, Song; Jin, Lin-Hong; Song, Bao-An; Chi, Yonggui Robin

    2015-07-06

    The reaction mechanism of the γ-carbon addition of enal to imine under oxidative N-heterocyclic carbene catalysis is studied experimentally. The oxidation, γ-carbon deprotonation, and nucleophilic addition of γ-carbon to imine were found to be facile steps. The results of our study also provide highly enantioselective access to tricyclic sulfonyl amides that exhibit interesting antimicrobial activities against X. oryzae, a bacterium that causes bacterial disease in rice growing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of PhSCF2CF2SiMe3 as a Tandem Anion and Radical Tetrafluoroethylene Equivalent: Fluoride-Catalyzed Addition to N-Substituted Cyclic Imides Followed by Radical Cyclization

    Czech Academy of Sciences Publication Activity Database

    Chernykh, Yana; Opekar, Stanislav; Klepetářová, Blanka; Beier, Petr

    2012-01-01

    Roč. 23, č. 8 (2012), s. 1187-1190 ISSN 0936-5214 R&D Projects: GA ČR GAP207/11/0421 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleophilic addition * radical reaction * fluorine * heterocycles * imides Subject RIV: CC - Organic Chemistry Impact factor: 2.655, year: 2012

  4. Synthesis and nucleophilic aromatic substitution of 3-fluoro-5-nitro-1-(pentafluorosulfanyl)benzene

    Czech Academy of Sciences Publication Activity Database

    Ajenjo, Javier; Greenhall, M.; Zarantonello, C.; Beier, Petr

    2016-01-01

    Roč. 12, Feb 3 (2016), s. 192-197 ISSN 1860-5397 EU Projects: European Commission(XE) 607787 - FLUOR21 Institutional support: RVO:61388963 Keywords : direct fluorination * fluorine * nucleophilic aromatic substitution * pentafluorosulfanyl group * vicarious nucleophilic substitution Subject RIV: CC - Organic Chemistry Impact factor: 2.337, year: 2016 http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-12-21

  5. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  6. Ion-Molecule Reaction Dynamics.

    Science.gov (United States)

    Meyer, Jennifer; Wester, Roland

    2017-05-05

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  7. Diels-Alder reactions: The effects of catalyst on the addition reaction

    Science.gov (United States)

    Yilmaz, Özgür; Kus, Nermin Simsek; Tunç, Tuncay; Sahin, Ertan

    2015-10-01

    The reaction between 2,3-dimethyl-1,3-butadiene and dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate is efficiently achieved with small amounts of catalyst, i.e. phenol, AcOH, nafion, and β-cyclodextrin. Exo-diastereoselective cycloaddition reactions were observed both without catalyst and different catalysts for 48 days. As a result, different products (tricyclicmolecule 5, retro-Diels-Alder product 6, and oxidation product 7) were obtained with different catalysts. In addition, we synthesized Diels-Alders product 8 and tricyclocyclitol 10 via Diels-Alder reaction. The structures of these products were characterized by 1H NMR, 13C NMR, MS and IR spectroscopy.

  8. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    International Nuclear Information System (INIS)

    Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2015-01-01

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an S N 2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the S N 2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the S N 2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction

  9. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Rojas, Sebastián, E-mail: [Chemical Processes and Catalysis (CPC), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago (Chile); Toro-Labbé, Alejandro [Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago (Chile)

    2015-05-21

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an S{sub N}2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the S{sub N}2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the S{sub N}2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction.

  10. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection.

    Science.gov (United States)

    Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T

    2010-06-16

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.

  11. The features of nucleophilic substitution of the nitro group in 4-alkyl-6-nitro-1,2,4-triazolo[5,1-c][1,2,4]triazines

    Directory of Open Access Journals (Sweden)

    E. N. Ulomsky

    2017-05-01

    Full Text Available The nucleophilic substitution of the nitro group of 4-alkyl-6-nitro-4,7-dihydro-1,2,4-triazolo[5,1-c][1,2,4]triazine-7-ones on the example of interactionwith morpholine was studied. It is established that under the action of excess cycloalkylimine at room temperature the unusual easy disclosure of triazine cycle with the formation of sterically hindered hydrazones occurs which are the key intermediates for further transformations. The carrying of reaction at elevated temperatures leads to the formation of products of substitution of the nitro group with the amine and also with morpholyl hydrazones which are the products of hydrolysis of amides of hydrazones and subsequent decarboxylation. Thus, the nucleophilic substitution of the nitro group in the described triazolotriazines flows through the ANRORC mechanism.

  12. Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF

    DEFF Research Database (Denmark)

    Petersen, Trine P; Larsen, Anders Foller; Ritzén, Andreas

    2013-01-01

    A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported.......A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported....

  13. Polar Diels-Alder reactions using electrophilic nitrobenzothiophenes. A combined experimental and DFT study

    Science.gov (United States)

    Della Rosa, Claudia D.; Mancini, Pedro M. E.; Kneeteman, Maria N.; Lopez Baena, Anna F.; Suligoy, Melisa A.; Domingo, Luis R.

    2015-01-01

    The reactions between 2- and 3-nitrobenzothiophenes with three dienes of different nucleophilicity, 1-methoxy-3-trimethylsilyloxy-1,3-butadiene, 1-trimethylsilyloxy-1,3-butadiene and isoprene developed in anhydrous benzene and alternative under microwave irradiation with molecular solvents or in free solvent conditions, respectively, for produce dibenzothiophenes permit to conclude that both nitroheterocycles act as electrophile with the cited dienes. In the cases of the dienes 1-methoxy-3-trimethylsilyloxy-1,3-butadiene and 1-trimethylsilyloxy-1,3-butadiene which posses major nucleophilicity the observed product is the normal cycloaddition one. However when the diene is isoprene the product with both electrophiles follow the hetero Diels-Alder way. These reactions are considered polar cycloaddition reactions and the yields are reasonables. Moreover the polar Diels-Alder reactions of nitrobenzothiophenes with electron rich dienes 1-trimethylsilyloxy-1,3-butadiene have been theoretically studied using DFT methods.

  14. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  15. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    Science.gov (United States)

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert; Vummaleti, Sai V. C.; Cavallo, Luigi

    2013-01-01

    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  17. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert

    2013-11-11

    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  18. α-deuterium isotope effects in benzyl halides. 2. Reaction of nucleophiles with substituted benzyl bromides. Evidence for a change in transition-state structure with electron-donating substituents

    International Nuclear Information System (INIS)

    Vitullo, V.P.; Grabowski, J.; Sridharan, S.

    1980-01-01

    Rates and α-D isotope effects have been determined for the following substrates and nucleophiles: p-methoxybenzyl bromide (Et 3 N, SCN - , N 3 - , OH - , S 2 O 3 2- ), benzyl bromide (Et 3 N, SCN - , N 3 - , OH - , S 2 O 3 2- ), and p-nitrobenzyl bromide (Et 3 N, SCN - , N 3 - , S 2 O 3 2- ). In nearly all cases the second-order rate constant for each nucleophile goes through a minimum for the unsubstituted compound while the α-D isotope increases monotonically in the squence p-NO 2 > p-H > p-OCH 3 . These results are consistent with an increasing looseness of the S/sub N/2 transition state as the substituent on the aromatic ring becomes more electron donating. 4 figures, 3 tables

  19. Major mechanistic differences between the reactions of hydroxylamine with phosphate di- and tri-esters.

    Science.gov (United States)

    Medeiros, Michelle; Wanderlind, Eduardo H; Mora, José R; Moreira, Raphaell; Kirby, Anthony J; Nome, Faruk

    2013-10-07

    Hydroxylamine reacts as an oxygen nucleophile, most likely via its ammonia oxide tautomer, towards both phosphate di- and triesters of 2-hydroxypyridine. But the reactions are very different. The product of the two-step reaction with the triester TPP is trapped by the NH2OH present in solution to generate diimide, identified from its expected disproportionation and trapping products. The reaction with H3N(+)-O(-) shows general base catalysis, which calculations show is involved in the breakdown of the phosphorane addition-intermediate of a two-step reaction. The reactivity of the diester anion DPP(-) is controlled by its more basic pyridyl N. Hydroxylamine reacts preferentially with the substrate zwitterion DPP(±) to displace first one then a second 2-pyridone, in concerted S(N)2(P) reactions, forming O-phosphorylated products which are readily hydrolysed to inorganic phosphate. The suggested mechanisms are tested and supported by extensive theoretical calculations.

  20. Kinetics and mechanism of the base-catalysed reaction of 4 ...

    African Journals Online (AJOL)

    NPMPF) in benzene has been investigated at 27oC and in the presence of functionally similar, but structurally different addenda, namely; imidazole, pyridine and triethylamine. The reaction is catalysed by the nucleophile and imidazole in a linear ...

  1. The Reactions of Nitrogen Heterocycles with Acrolein: Scope and Prebiotic Significance

    Science.gov (United States)

    Cleaves, H. James

    2002-12-01

    It has been suggested that life began with a self-replicating RNA molecule. However, after much research into the prebiotic synthesis of RNA, the difficulties encountered have lead some to hypothesize that RNA was preceded by a simpler molecule, one more easily synthesized prebiotically. Many of the proposed alternative molecules are based on acrolein, since it reacts readily with nucleophiles, such as the nucleobases, via Michael addition and is readily synthesized from formaldehyde and acetaldehyde. Reports regarding the reactions of nucleobases with concentrated acrolein solutions suggest that this is a plausible reaction mechanism, though there are also reports that the "incorrect" isomers are obtained. The scope and kinetics of the reaction of acrolein with various nitrogen heterocycles are reported here. Reactions of pyrimidines often give N1 adducts as the major products. Reactions of purines often give N9 adducts in good yield. The reactions are rapid under neutral to slightly alkaline conditions, and proceed at low temperatures and dilutions. The implications of these findings for the origin of life are discussed.

  2. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions.

    Science.gov (United States)

    Rapi, Zsolt; Nemcsok, Tamás; Pálvölgyi, Ádám; Keglevich, György; Grün, Alajos; Bakó, Péter

    2017-06-01

    A few new l-threitol-based lariat ethers incorporating a monoaza-15-crown-5 unit were synthesized starting from diethyl l-tartrate. These macrocycles were used as phase transfer catalysts in asymmetric Michael addition reactions under mild conditions to afford the adducts in a few cases in good to excellent enantioselectivities. The addition of 2-nitropropane to trans-chalcone, and the reaction of diethyl acetamidomalonate with β-nitrostyrene resulted in the chiral Michael adducts in good enantioselectivities (90% and 95%, respectively). The substituents of chalcone had a significant impact on the yield and enantioselectivity in the reaction of diethyl acetoxymalonate. The highest enantiomeric excess (ee) values (99% ee) were measured in the case of 4-chloro- and 4-methoxychalcone. The phase transfer catalyzed cyclopropanation reaction of chalcone and benzylidene-malononitriles using diethyl bromomalonate as the nucleophile (MIRC reaction) was also developed. The corresponding chiral cyclopropane diesters were obtained in moderate to good (up to 99%) enantioselectivities in the presence of the threitol-based crown ethers. © 2017 Wiley Periodicals, Inc.

  3. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  4. Nucleophilic addition to olefins. 7. Kinetic deuterium isotope effects as criterion for an enforced preassociation mechanism in the hydrolysis of substituted benzylidene Meldrum's acids

    International Nuclear Information System (INIS)

    Bernasconi, C.F.; Leonarduzzi, G.D.

    1982-01-01

    The hydrolysis of the title compounds occurs in four steps: (1) nucleophilic attack by water or hydroxide ion to form the addition complex T/sub OH/ - ; (2) carbon protonation of T/sub OH/ - to form T/sub OH/ 0 ; (3) oxygen deprotonation of T/sub OH/ 0 to form T/sub OH/ 0 - ; (4) collapse of the tetrahedral intermediate T/sub OH/ - into the respective benzaldehyde and Meldrum's acid anion. There is also a water-catalyzed collapse of T/sub OH/ 0 which becomes dominant in strongly acidic solution. In basic solution carbon protonation of T/sub OH/ - (step 2) is rate limiting; in strongly acidic media the water-catalyzed collapse of T/sub OH/ 0 is rate limiting for all substrates. In moderatly acidic solution two types of behavior were observed. With the p-nitro derivative step 4 is rate limiting at high, step 3 at low buffer concentrations. The latter situation is equivalent to a diffusion-controlled trapping mechanism in the reverse direction. With the parent and the p-methoxy derivative, collapse of T/sub OH/ 0 - occurs before the protonated base catalyst generated in step 3 can diffuse away; this is equivalent to an enforced preassociation mechanism in the reverse direction and is analogous to the reaction of thiol anions with acetaldehyde studied by Gilbert and Jencks. Our interpretation is strongly supported by (1) α secondary kinetic deuterium isotope effects which are large for the preassociation mechanism but essentially nil for the trapping mechanism and (2) by Bronsted #betta# values around 0.8 in the case of the preassociation mechanism and 1.0 for the trapping mechanism. The mechanism for the water-catalyzed collapse of T/sub OH/ 0 - is probably concerted, a conclusion which is supported by a large positive deviation from the Bronsted plot for base catalysis and by a large α secondary kinetic deuterium isotope effect

  5. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.

    Science.gov (United States)

    Roldán, Raquel; Sanchez-Moreno, Israel; Scheidt, Thomas; Hélaine, Virgil; Lemaire, Marielle; Parella, Teodor; Clapés, Pere; Fessner, Wolf-Dieter; Guérard-Hélaine, Christine

    2017-04-11

    d-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. preparation and nucleophilic substitution of the 2,4,6

    African Journals Online (AJOL)

    Mgina

    Three methods for preparation of D-amino acids by nucleophilic substitution on derivatives of ... bioactivity of the peptide (Wenger 1985, ... Acetic acid (0.29 mL, 5 mmol) was added, and the mixture was further stirred for 5 h at rt under ... methanol/dichloromethane) to yield a white ... temperature, diluted with water, extracted.

  7. Variational Flooding Study of a SN2 Reaction.

    Science.gov (United States)

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    2017-02-02

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  8. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  9. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Lahouaria Medjdoub

    2016-08-01

    Full Text Available Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP with allylamine in order to give hexa(allylaminocyclotriphosphazene (HACTP  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance and FTIR (Fourier Transform Infrared spectroscopy. MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery and TGA (Thermogravimetric Analysis show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 28th September 2015; Revised: 5th December 2015; Accepted: 4th January 2016 How to Cite: Medjdoub, L., Mohammed, B. (2016. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 151-160 (doi:10.9767/bcrec.11.2.541.151-160 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.541.151-160

  10. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  11. Synthesis of 11C-labelled haloalkanonitriles and examples of their use in some alkylation reactions

    International Nuclear Information System (INIS)

    Hoernfeldt, K.; Antoni, G.; Laangstroem, B.

    1992-01-01

    The synthesis of the 11 C-labelled bifunctional precursors 4-iodobutyro[ 11 C]nitrile (1), 4-tosyloxybutyro[ 11 C]nitrile (2), 5-iodovalero[ 11 C]nitrile (3), 5-toxyloxyvalero[ 11 C]nitrile (4) and 4-bromopentano[ 11 C]nitrile (5) are presented. The nucleophilic substitution reactions of [ 11 C]cyanide with dibromides, diiodides, ditosylates or mixed iodotosylates producing 1-5 have been carried out in different solvents and the labelled products were obtained in 62-98% radiochemical yields (not isolated), with a total synthesis time of 5 min counted from the end of the hydrogen [ 11 C]cyanide synthesis. The labelled haloalkanonitriles 1 and 3 have also been used in some alkylation reactions with various carbon and oxygen nucleophiles. (au)

  12. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  13. The thriving chemistry of ketenimines.

    Science.gov (United States)

    Lu, Ping; Wang, Yanguang

    2012-09-07

    Ketenimines are an important class of reactive species and useful synthetic intermediates. During the last two decades several practical and versatile approaches to ketenimines have been developed, leading to exhaustive investigations on ketenimine chemistry and the discovery of a variety of highly efficient reactions. Five types of reactions for ketenimines have been reported, including nucleophilic additions (ketenimines can be used as both electrophiles and nucleophiles), radical additions, cycloaddition reactions, electrocyclic ring closure reactions, and σ rearrangements. Furthermore, numerous complex organic compounds, particularly the biologically interesting heterocycles, have been constructed using these methodologies. The review of these accomplishments is presented here.

  14. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  15. Double Michael Addition Reaction of Bischalcone under Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LI,Ji-Tai; XU,Wen-Zhi; CHEN,Guo-Feng; LI,Tong-Shuang

    2004-01-01

    @@ The Michael addition of 1,5-diaryl-1,4-pentadien-3-ones with active methylene compounds has been the subjects of many investigations. Ultrasound has increasingly been used in organic synthesis in the last three decades. Compared with traditional methods, this method is more convenient and easily controlled. A large number of organic reactions can be carried out in higher yield, shorter reaction time or milder conditions under ultrasonic irradiation. KF/Al2O3 as a useful solid supported catalyst has received considerable attention because of their high level of chemoselectivity and environmental compatibility as well as simplicity of operation and their ready availability at low cost. Herein we report the double Michael addition of dibenzalacetone with active methlene compounds such as dimethyl malonate, diethyl malonate,methyl cyanoacetate and ethyl cyanoacetate catalyzed by KF/Al2O3 under ultrasound irradiation.

  16. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  17. Ring opening of a resin-bound chiral aziridine with phenol nucleophiles

    DEFF Research Database (Denmark)

    Ottesen, Lars Korsgaard; Jaroszewski, Jerzy W; Franzyk, Henrik

    2010-01-01

    An efficient and versatile solid-phase route for the preparation of aryl-alkyl ethers is described. Regioselective ring opening of a resin-bound chiral aziridine with phenolic nucleophiles constitutes the key feature of the present protocol that allows incorporation of fluorescent moieties...

  18. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    Sugano, Motoyuki; Katoh, Harumi; Komatsu, Akihiro; Kobayashi, Hiroshi; Okado, Kohta; Kakuta, Yusuke; Hirano, Katsumi

    2012-01-01

    It is well known that over 0.8 kg kg −1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg −1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L −1 and 0.52 mol L −1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L −1 to 3.33 mol L −1 . It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L −1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg -1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  19. Lateral extension of π conjugation along the bay regions of bisanthene through a diels-alder cycloaddition reaction

    KAUST Repository

    Li, Jinling; Jiao, Chongjun; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    Diels-Alder cycloaddition reactions at the bay regions of bisanthene (1) with dienophiles such as 1,4-naphthoquinone have been investigated. The products were submitted to nucleophilic addition followed by reductive aromatization reactions to afford the laterally extended bisanthene derivatives 2 and 3. Attempted synthesis of a larger expanded bisanthene 4 revealed an unexpected hydrogenation reaction at the last reductive aromatization step. Unusual Michael addition was observed on quinone 14, which was obtained by Diels-Alder reaction between 1 and 1,4-anthraquinone. Compounds 1-3 exhibited near-infrared (NIR) absorption and emission with high-to-moderate fluorescent quantum yields. Their structures and absorption spectra were studied by density function theory and non-planar twisted structures were calculated for 2 and 3. All compounds showed amphoteric redox behavior with multiple oxidation/reduction waves. Oxidative titration with SbCl 5 gave stable radical cations, and the process was followed by UV/Vis/NIR spectroscopic measurements. Their photostability was measured and correlated to their different geometries and electronic structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lateral extension of π conjugation along the bay regions of bisanthene through a diels-alder cycloaddition reaction

    KAUST Repository

    Li, Jinling

    2011-11-14

    Diels-Alder cycloaddition reactions at the bay regions of bisanthene (1) with dienophiles such as 1,4-naphthoquinone have been investigated. The products were submitted to nucleophilic addition followed by reductive aromatization reactions to afford the laterally extended bisanthene derivatives 2 and 3. Attempted synthesis of a larger expanded bisanthene 4 revealed an unexpected hydrogenation reaction at the last reductive aromatization step. Unusual Michael addition was observed on quinone 14, which was obtained by Diels-Alder reaction between 1 and 1,4-anthraquinone. Compounds 1-3 exhibited near-infrared (NIR) absorption and emission with high-to-moderate fluorescent quantum yields. Their structures and absorption spectra were studied by density function theory and non-planar twisted structures were calculated for 2 and 3. All compounds showed amphoteric redox behavior with multiple oxidation/reduction waves. Oxidative titration with SbCl 5 gave stable radical cations, and the process was followed by UV/Vis/NIR spectroscopic measurements. Their photostability was measured and correlated to their different geometries and electronic structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regio- and stereoselective 1,2-dihydropyridine alkylation/addition sequence for the synthesis of piperidines with quaternary centers.

    Science.gov (United States)

    Duttwyler, Simon; Chen, Shuming; Lu, Colin; Mercado, Brandon Q; Bergman, Robert G; Ellman, Jonathan A

    2014-04-07

    The first example of C alkylation of 1,2-dihydropyridines with alkyl triflates and Michael acceptors was developed to introduce quaternary carbon centers with high regio- and diastereoselectivity. Hydride or carbon nucleophile addition to the resultant iminium ion also proceeded with high diastereoselectivity. Carbon nucleophile addition results in an unprecedented level of substitution to provide piperidine rings with adjacent tetrasubstituted carbon atoms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Arenethiolatecopper(I) complexes as homogeneous catalysts for Michael addition reactions

    NARCIS (Netherlands)

    Koten, G. van; Klaveren, M. van; Lambert, F.; Eijkelkamp, D.J.F.M.; Grove, D.M.

    1994-01-01

    Arenethiolatocopper(I) complexes are shown to be efficient homogeneous catalysts in Michael addition reactions of several Grignard reagents to acyclic enones; the addition products are formed with excellent chemoselectivity (>99%) and good enantioselectivity (76% e.e.).

  3. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  4. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G.; Madsen, Charlotte Bernhard; Halken, S.

    1994-01-01

    and 335 were subjected to open challenge. A total of 23 children developed positive reactions after the open challenge. Sixteen of these patients accepted the double-blind challenge, and six showed a positive reaction to preservatives (atopic dermatitis, asthma, rhinitis), coloring agents (atopic......, rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated ''lemonade'' containing the dissolved additives was used...... for the open challenge. Two doses were used: a low dose and a 10-fold higher dose. Gelatin capsules were used for a double-blind challenge. The children were 4-15 years old, and they were attending an outpatient pediatric clinic for the first time. Of the 379 patients who entered the study, 44 were excluded...

  5. Hydroxylation of nitro-(pentafluorosulfanyl)benzenes via vicarious nucleophilic substitution of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Beier, Petr; Pastýříková, Tereza

    2011-01-01

    Roč. 52, č. 34 (2011), s. 4392-4394 ISSN 0040-4039 R&D Projects: GA ČR GAP207/11/0344 Institutional research plan: CEZ:AV0Z40550506 Keywords : pentafluorosulfanyl group * vicarious nucleophilic substitution * hydroxylation Subject RIV: CC - Organic Chemistry Impact factor: 2.683, year: 2011

  6. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Pierre Vogel

    2016-08-01

    Full Text Available Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines, P- (e.g., tertiary phosphines and C-nucleophiles (e.g., N-heterocyclic carbenes. Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes.

  7. Double Displacement: an Improved Bioorthogonal Reaction Strategy for Templated Nucleic Acid Detection

    OpenAIRE

    Kleinbaum, Daniel J.; Miller, Gregory P.; Kool, Eric T.

    2010-01-01

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is undesired reaction with water and other cellular nucleophiles. Here we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectu...

  8. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride...

  9. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  10. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    Science.gov (United States)

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  11. Prediction of the chemo- and regioselectivity of Diels-Alder reactions of o-benzoquinone derivatives with thiophenes by means of DFT-based reactivity indices

    Science.gov (United States)

    Ghomri, Amina; Mekelleche, Sidi Mohamed

    2014-03-01

    Global and local reactivity indices derived from density functional theory were used to elucidate the regio- and chemoselectivity of Diels-Alder reactions of masked o-benzoquinones with thiophenes acting as dienophiles. The polarity of the studied reactions is evaluated in terms of the difference of electrophilicity powers between the diene and dienophile partners. Preferential cyclisation modes of these cycloadditions are predicted using Domingo's polar model based on the local electrophilicity index, ωk, of the electrophile and the local nucleophilicity index, Nuk, of the nucleophile. The theoretical calculations, carried out at the B3LYP/6-311G(d,p) level of theory, are in good agreement with experimental findings.

  12. Microwave Assisted Condensation Reactions of 2-Aryl Hydrazonopropanals with Nucleophilic Reagents and Dimethyl Acetylenedicarboxylate

    Directory of Open Access Journals (Sweden)

    Rita M. Borik

    2007-08-01

    Full Text Available The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines 3a,b to give the corresponding aryl hydrazones 6a-h. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of 6c with secondary amines. The reaction of 6e,h with benzotriazolylacetone yielded 14a,b. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of 6b,e with dimethyl acetylenedicarboxylate (DMAD in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.

  13. Direct Amination of Nitro(pentafluorosulfanyl)benzenes through Vicarious Nucleophilic Substitution of Hydrogen

    Czech Academy of Sciences Publication Activity Database

    Pastýříková, Tereza; Iakobson, George; Vida, Norbert; Pohl, Radek; Beier, Petr

    -, č. 11 (2012), s. 2123-2126 ISSN 1434-193X R&D Projects: GA ČR GAP207/12/0072 Institutional research plan: CEZ:AV0Z40550506 Keywords : sulfur * amination * nucleophilic substitution * nitrogen heterocycles Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  14. Inversion of Configuration at the Phosphorus Nucleophile in the Diastereoselective and Enantioselective Synthesis of P-Stereogenic syn-Phosphiranes from Chiral Epoxides.

    Science.gov (United States)

    Muldoon, Jake A; Varga, Balázs R; Deegan, Meaghan M; Chapp, Timothy W; Eördögh, Ádám M; Hughes, Russell P; Glueck, David S; Moore, Curtis E; Rheingold, Arnold L

    2018-04-23

    Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (S N 2) or racemization (S N 1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P-stereogenic syn-phosphiranes. DFT studies suggested that the novel stereochemistry results from acid-promoted tosylate dissociation to yield an intermediate phosphenium-bridged cation, which undergoes syn-selective cyclization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hexafluorobenzene: A powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction

    KAUST Repository

    Lattanzi, Alessandra; De Fusco, Claudia; Russo, Alessio; Poater, Albert; Cavallo, Luigi

    2012-01-01

    A dramatic enhancement of the diastereo- and enantioselectivity in the nitro-Michael addition reaction organocatalysed by a commercially available α,α-l-diaryl prolinol was disclosed when performing the reaction in unconventional hexafluorobenzene

  16. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  17. Molecular-weight-enlarged multiple-pincer ligands: synthesis and application in palladium-catalyzed allylic substitution reactions

    NARCIS (Netherlands)

    Ronde, N.J.; Totev, D.; Müller, Christian; Lutz, M.; Spek, A.L.; Vogt, D.

    2009-01-01

    Three different pincer ligand systems are synthesized via nucleophilic substitution reactions of polyaromatic benzyl bromides as support molecules and phenol derivatives as ligand precursors. Retention tests using a polymeric nanofiltration membrane show moderate to good retention in THF and CH2Cl2.

  18. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  19. Reatividade de ciclopropenonas frente a nucleófilos e sua correlação com potenciais de redução em meio aprótico Reactivity of cyclopropenones towards nucleophiles and correlation with reduction potentials in aprotic medium

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    2008-01-01

    Full Text Available In this work we studied the reactivity of isopropylphenylcyclopropenone towards some nitrogen nucleophiles whose reactions with methylphenylcyclopropenone and diphenylcyclopropenone were previously studied. The electrochemical behavior of these cyclopropenones was evaluated for the first time, and a correlation between electrochemical parameters and reactivity of this class of compounds was done.

  20. Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH.

    Science.gov (United States)

    Bandyopadhyay, Anupam; Gao, Jianmin

    2015-10-12

    Bioorthogonal reactions that are fast and reversible under physiological conditions are in high demand for biological applications. Herein, it is shown that an ortho boronic acid substituent makes aryl ketones rapidly conjugate with α-nucleophiles at neutral pH. Specifically, 2-acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 10(2) to 10(3) M(-1) s(-1) , comparable to the fastest bioorthogonal conjugations known to date. (11) B NMR analysis revealed the varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiological conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inserção de catalisador híbrido na síntese de beta-tiocetonas

    Directory of Open Access Journals (Sweden)

    Mariana Pompilio Darbem

    2012-06-01

    Full Text Available The Michael reaction (or Michael addition involves the addition of a nucleophile, called Michael donor, to an electrophile (α,β-unsaturated, called Michael acceptor. Literature reports several types of nucleophiles applied in this reaction. Among them we can mention compounds containing a sulfur atom. When these nucleophiles are applied to this reaction, it is called as thia-Michael reaction. In this study thiophenol, p- chlorothiophenol and p-methoxythiophenol were tested as Michael donors, and several ketones and aldehydes as Michael acceptors, in order to obtain the formation of sigma bonds carbon-sulfur. Compounds that have in their structure the C-S bond are extremely important, because they can present, for example, antibiotic action, antimicrobial analgesic, and anti-HIV. This research proposes, besides the obtainment of  many beta-thioketonic compounds, the insertion of a new catalyst in thia-Michael reactions, the bis-L-zinc prolinate. This catalyst provided the obtainment of high yield compounds. The reactions were executed using ultrasound, which caused a significant decrease in the reaction time and an increase in the results obtained when compared with data obtained previously in literature. An important fact in this study is that the catalyst used is not soluble in the reaction media and it can be reused without abrupt loss of yield.

  2. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  3. (4+2) Cycloaddition reactions with inverse electron demand of nitrogen bearing, heteroaromatic cations

    International Nuclear Information System (INIS)

    Ritzberger-Baumgartner, W.

    1996-06-01

    Three cationic, heteroaromatic diene-systems (1, 2, 3, 4-tetramethoxycarbonyl-quinolizinium-tetrafluoroborate (M), 8, 9, 10, 11-tetrarnethoxycarbonylpyrido[2,1-a]-isoquinolinium-TFB and triazolo[1,5-b]isoquinolinium-TFBs) and a cationic, non-aromatic diene (2,5,5-trimethyl-3-oxo-1, 2, 4-triazolium-TFB) were synthesized. The dienes were employed successfully in cycloaddition reactions with a number ofconjugated dienophiles (including norbornene). The mechanism underlying these cycloaddition reactions was discussed in the theoretical section. At first quantumchemical calculations of the frontier orbital energies provided the proof, that the reactions followed the pattern of reactions with inverse electron demand. Calculation of the charge distribution and of the orbital coefficients led to the conclusion, that these reactions are mainly orbital controlled. Two mechanistic variants were in discussion. Either the reactions proceed in a concerted manner resembling the Diels-Alder reaction with inverse electron demand or in two distinct steps with the formation of a cationic intermediate following the attack of the heterodienes acting as weak electrophiles at the dienophiles being weak nucleophiles. Calculations of a possible transition state of these cycloaddition reactions revealed a pronounced preference for the formation of the bond between the logical reaction centers in the first step of a two-step reaction. However, experimental and theoretical findings led to the conviction, that cationic polar cycloaddition reactions proceed exactly along the crossroad between a concerted and a two-step mechanism and depending on the electrophilic strength of the diene and the nucleophilic strength of the dienophile these reactions show more characteristics of one of the two mechanistic possibilities. The high regioselectivity as well as the high stereoselectivity could be explained satisfactory with the help of the calculated orbital coefficients. (author)

  4. Reaction of iminopropadienones with amines--formation of zwitterionic intermediates, ketenes, and ketenimines.

    Science.gov (United States)

    Veedu, Rakesh Naduvile; Kokas, Okanya J; Couturier-Tamburelli, Isabelle; Koch, Rainer; Aycard, Jean-Pierre; Borget, Fabien; Wentrup, Curt

    2008-10-09

    Five aryliminopropadienones 4a- d have been synthesized by flash vacuum thermolysis (FVT) by using two different precursors in each case. These compounds were deposited at 50 K at a pressure of ca. 10(-6) mbar together with three different nucleophiles, namely, trimethylamine (TMA), dimethylamine (DMA), and diethylamine (DEA), in order to study their reactions as neat solids during warm-up by FTIR spectroscopy. The reaction with TMA showed that a zwitterionic species (5 and/or 6) was formed in all the cases. With DMA and DEA, an alpha-oxoketenimine and/or an imidoylketene (7 and 8 or 9 and 10) was formed as the final product. In addition, several bands were observed, which can be assigned to zwitterionic intermediates (11 or 12). Optimized structures and vibrational spectra for all products were calculated at the B3LYP/6-31G(d) level of theory by using the polarizable continuum model (epsilon = 5).

  5. Kinetics on the reaction of substituted quinolines and p-substituted benzoylchlorides under various pressures

    International Nuclear Information System (INIS)

    Kim, Young Cheul; Lim, Jong Wan; Choi, Sung Yong; Kim, Se Kyong

    1999-01-01

    The reaction rates of substituted quinolines(6-CH 3 C 9 H 7 N, C 9 H 7 N) with p-substituted benzoylchlorides(p-CH 3 , p-H, p-NO 2 ) have been measured by conductometry in acetonitrile, and the rate constants are determined at various temperatures (10,15, 20, 25 .deg. C) and pressures(1, 200, 500, 1000bar). From the values of rate constants, the activation parameters(Ea, ΔV ≠ , ΔS ≠ , and ΔG ≠ ) and the pressure dependence of Hammett ρ values were determined. The rate constants increase as a function of temperatures and pressures, and are further increase by introduction the electron donor substituents in nucleophile(p-CH 3 ) or electron acceptor(p-NO 2 ) substituents in substrate. The activation volume, and the activation entropy are all negative. Hammett ρ values are also negative for nucleophile (ρ X ) and positive for the substrate (ρ Y ) over the pressure range studied. The results of kinetic studies for pressure and substituent show that these reactions proceed in typical S N 2 reaction mechanism and 'associative S N 2' in which bond formation favored with increasing pressures

  6. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  7. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  8. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císařová, I.; Klepetářová, Blanka; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 21, č. 27 (2015), s. 9877-9888 ISSN 0947-6539 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : cyclization * domino reactions * electron transfer * Michael addition * radical reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.771, year: 2015

  9. A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on Cu(100) surfaces modeled as finite clusters

    International Nuclear Information System (INIS)

    Rios R, C.H.; Romero R, M.; Ponce R, A.; Mendoza H, L.H.

    2008-01-01

    In this work, it is shown a theoretical quantum study of the active sites distribution on a monocrystalline surface of Cu(100). The copper surface was modeled as finite clusters of 14, 23, 38 and 53 atoms. We performed Hartree-Fock and Density Functional Theory (B3LYP) ab initio calculations employing the pseudopotentials of Hay and Wadt (LANLlMB y LANL2DZ). From calculations, we found a work function value of 4.1 eV. The mapping of the HOMO and LUMO in the frozen core approximation, allowed us finding the electrophilic and nucleophilic active sites distribution, respectively. The results indicated that electrophilic sites on the Cu(100) surface were located on hollow position and its numerical density was 8.6 x 10 16 sites cm -2 . From the nucleophilic local softness study, it was found that the nucleophilic sites were formed by a group of atoms and it had a numerical density of 2.4x 10 16 sitescm -2 . Last results indicated that adsorptions with 2 x 2 and 3 x 3 distributions can be favored onto a Cu(100) surface for the electrophilic and nucleophilic cases, respectively. (Author)

  10. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    Science.gov (United States)

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  11. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    KAUST Repository

    Wang, Ying; Du, Guang Fen; Xing, Fen; Huang, Kuo-Wei; Dai, Bin; He, Lin

    2015-01-01

    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    KAUST Repository

    Wang, Ying

    2015-10-15

    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine

    Directory of Open Access Journals (Sweden)

    Katja Hofmann

    2010-07-01

    Full Text Available Novel chromophoric and fluorescent carbonitrile-functionalized poly(vinyl amine (PVAm and PVAm/silica particles were synthesized by means of nucleophilic aromatic substitution of 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile (1 with PVAm in water. The water solubility of 1 has been mediated by 2,6-O-β-dimethylcyclodextrin or by pre-adsorption onto silica particles. Furthermore, 1 was converted with isopropylamine into the model compound 1-M. All new compounds were characterized by NMR, FTIR, UV–vis and fluorescence spectroscopy. The solvent-dependent UV–vis absorption and fluorescence emission band positions of the model compound and the carbonitrile-functionalized PVAm were studied and interpreted using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability, α (hydrogen-bond donating capacity and β (hydrogen-accepting ability in terms of the linear solvation energy relationship (LSER. The solvent-independent regression coefficients a, b and s were determined using multiple linear correlation analysis. It is shown, that the chains of the polymer have a significant influence on the solvatochromic behavior of 1-P. The structure of the carbonitrile 1-Si bound to polymer-modified silica particles was studied by means of X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET measurements. Fluorescent silica particles were obtained as shown by fluorescence spectroscopy with a diffuse reflectance technique.

  14. Synthesis and reactions of triphenylphosphine-O-benzophenonimine and derivatives

    International Nuclear Information System (INIS)

    Elamin, Manahil Babiker

    1999-08-01

    O-Amino benzophenone and its para and meta isomers were prepared using Friedl-Craft benzoylation. Their azides were also prepared via their diazonium salts. The azide of o-amino benzophenone in its reduced form (o-benzylaniline) and its cyclic ketal were synthesised. All azides thus formed were reacted separately with triphenylphosphine to give the corresponding phosphinimines, the Wittig reagents nitrogen analog. The reactivity of the phosphorous bond. (P=N) in the different phosphoranes were studied by two types of reactions: (1) the Wittig type of reaction using benzaldehyde and its into derivatives with each of the above prepared phosphinimines. While triphenylphosphine-m-benzophenonimine (ii) and the triphenylphosphine benzophenonimine ethylene acetal (v) and it's reduced form triphenylphosphine-o-benzophenonimine (iv) react giving the corresponding schiffis bases. However, the ortho (i) and the para (iii) isomers failed to react. This lack of reactivity is presumably due to their great stability which came about through the extensive resonance that reduced the nucleophilicity of the nitrogen nucleophiles. (2) The phophinimines each was irradiated using Hanovia medium pressure UV lamp. Also the ortho and para isomers were not affected while others reacted giving the corresponding azo-compound and triphenylphosphine. they were separated and detected by chromatography.(Author)

  15. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new

  16. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  17. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  18. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    Science.gov (United States)

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  19. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  20. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.

    Science.gov (United States)

    Yaylayan, Varoujan A; Machiels, David; Istasse, Louis

    2003-05-21

    One of the main shortcomings of the information available on the Maillard reaction is the lack of knowledge to control the different pathways, especially when it is desired to direct the reaction away from the formation of carcinogenic and other toxic substances to more aroma and color generation. The use of specifically phosphorylated sugars may impart some elements of control over the aroma profile generated by the Maillard reaction. Thermal decomposition of 1- and 6-phosphorylated glucoses was studied in the presence and absence of ammonia and selected amino acids through pyrolysis/gas chromatography/mass spectrometry using nonpolar PLOT and medium polar DB-1 columns. The analysis of the data has indicated that glucose-1-phosphate relative to glucose undergoes more extensive phosphate-catalyzed ring opening followed by formation of sugar-derived reactive intermediates as was indicated by a 9-fold increase in the amount of trimethylpyrazine and a 5-fold increase in the amount of 2,3-dimethylpyrazine, when pyrolyzed in the presence of glycine. In addition, glucose-1-phosphate alone generated a 6-fold excess of acetol as compared to glucose. On the other hand, glucose-6-phosphate enhanced retro-aldol reactions initiated from a C-6 hydroxyl group and increased the subsequent formation of furfural and 4-cyclopentene-1,3-dione. Furthermore, it also stabilized 1- and 3-deoxyglucosone intermediates and enhanced the formation of six carbon atom-containing Maillard products derived directly from them through elimination reactions such as 1,6-dimethyl-2,4-dihydroxy-3-(2H)-furanone (acetylformoin), 2-acetylpyrrole, 5-methylfurfural, 5-hydroxymethylfurfural, and 4-hydroxy-2,5-dimethyl-3-(2H)-furanone (Furaneol), due to the enhanced leaving group ability of the phosphate moiety at the C-6 carbon. However, Maillard products generated through the nucleophilic action of the C-6 hydroxyl group such as 2-acetylfuran and 2,3-dihydro-3,5-dihydroxy-4H-pyran-4-one were retarded, due

  1. Mechanistic studies on the phosphoramidite coupling reaction in oligonucleotide synthesis. I. Evidence for nudeophilic catalysis by tetrazole and rate variations with the phosphorus substituents

    DEFF Research Database (Denmark)

    Dahl, Bjarne H.; Nielsen, John; Dahl, Otto

    1987-01-01

    , and that dialkylammonium tetrazolide salts are inhibitors. These and other facts are evidence that the reactions are subjected to nucleophilic catalysis by tetrazole, in addition to acid catalysis. The rate variations with phosphorus substituents of 1a-h are NEt 2 > NRr12 > N(CH 2CH 2)O > NMePh, and OMe > OCH 2CH 2CN......Tetrazole catalyzed reactions of a series of phosphoramidites, 5′ -O- DMTdT-3′-O-P(OR 1)NRNR22 (1a-h), with 3′ O-SiBu tPh 2-6-N-benzoyl-dA (2a) in acetonitrite solution have been studied. It is found that the coupling rate depends very much on whether tetrazole is added before or after 2a...

  2. Hexafluorobenzene: A powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction

    KAUST Repository

    Lattanzi, Alessandra

    2012-01-01

    A dramatic enhancement of the diastereo- and enantioselectivity in the nitro-Michael addition reaction organocatalysed by a commercially available α,α-l-diaryl prolinol was disclosed when performing the reaction in unconventional hexafluorobenzene as a medium. DFT calculations were performed to clarify the origin of stereoselectivity and the role of C 6F 6. © The Royal Society of Chemistry 2012.

  3. Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study

    Science.gov (United States)

    Mancini, Pedro M. E.; Kneeteman, María N.; Cainelli, Mauro; Ormachea, Carla M.; Domingo, Luis R.

    2017-11-01

    The behaviors of N-tosylnitropyrroles acting as electrophilic dienophiles in polar Diels-Alder reactions joint to different dienes of increeased nucleophilicity are analyzed. The reactions were developed under microwave irradiation using toluene or protic ionic liquids (PILs) as solvents and in free solvent conditions. In all the cases explored we observed good yields in short reaction times. For these reactions, the free solvent condition and the use of protic ionic liquids as solvents offer similar results. However, the free solvent conditions favor environmental sustainability. The role of PILs in these polar Diels-Alder reactions has been theoretically studied within the Molecular Electron Density Theory.

  4. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  5. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  6. Oxidative nucleophilic substitution of hydrogen in nitro(pentafluorosulfanyl)benzenes with alkyl Grignard and lithium reagents

    Czech Academy of Sciences Publication Activity Database

    Vida, Norbert; Beier, Petr

    2012-01-01

    Roč. 143, SI (2012), s. 130-134 ISSN 0022-1139 R&D Projects: GA ČR GAP207/12/0072 Institutional support: RVO:61388963 Keywords : pentafluorosulfanyl group * nucleophilic aromatic substitutions * oxidations Subject RIV: CC - Organic Chemistry Impact factor: 1.939, year: 2012

  7. Synthesis of New Cytotoxic Aminoanthraquinone Derivatives via Nucleophilic Substitution Reactions

    Directory of Open Access Journals (Sweden)

    Hasimah Alimon

    2013-07-01

    Full Text Available Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1 was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3, 1,4-dimethoxyanthracene-9,10-dione (5 and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7. Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a–d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylaminoanthracene-1,4-dione (3a, 2-(butylaminoanthracene-9,10-dione (5a and 2,3-(dibutylaminoanthracene-9,10-dione (5b. All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast and Hep-G2 (human hepatocellular liver carcinoma cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1–13.0 µg/mL.

  8. Double carbometallation of alkynes: an efficient strategy for the construction of polycycles.

    Science.gov (United States)

    Luo, Yong; Pan, Xiaolin; Yu, Xingxin; Wu, Jie

    2014-02-07

    Cyclization reactions of alkynes, especially the double carbometallation of alkynes, have drawn much interest from organic chemists because of their high efficiency in the construction of polycycles. Utilizing different nucleophiles or catalytic systems, various efficient strategies to access challenging skeletons have been extensively explored in recent years. In this review, achievements in this field are presented in three major parts (the syn-syn, anti-anti, and syn-anti addition reactions of diynes or two alkyne molecules). Cyclization reactions of diynes initiated by nucleophiles, [2+2+n] cycloaddition, or other processes and reactions, involving two identical or different alkynes are described, which provide facile and reliable approaches to various π systems, medium-sized rings, and even macrocycles.

  9. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's bases via a nucleophilic displacement approach.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-09-13

    We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

  10. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve......-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  11. Validated spectrophotometric methods for determination of Alendronate sodium in tablets through nucleophilic aromatic substitution reactions

    Directory of Open Access Journals (Sweden)

    Walash Mohamed I

    2012-04-01

    Full Text Available Abstract Background Alendronate (ALD is a member of the bisphosphonate family which is used for the treatment of osteoporosis, bone metastasis, Paget's disease, hypocalcaemia associated with malignancy and other conditions that feature bone fragility. ALD is a non-chromophoric compound so its determination by conventional spectrophotometric methods is not possible. So two derivatization reactions were proposed for determination of ALD through the reaction with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl and 2,4-dinitrofluorobenzene (DNFB as chromogenic derivatizing reagents. Results Three simple and sensitive spectrophotometric methods are described for the determination of ALD. Method I is based on the reaction of ALD with NBD-Cl. Method II involved heat-catalyzed derivatization of ALD with DNFB, while, Method III is based on micellar-catalyzed reaction of the studied drug with DNFB at room temperature. The reactions products were measured at 472, 378 and 374 nm, for methods I, II and III, respectively. Beer's law was obeyed over the concentration ranges of 1.0-20.0, 4.0-40.0 and 1.5-30.0 μg/mL with lower limits of detection of 0.09, 1.06 and 0.06 μg/mL for Methods I, II and III, respectively. The proposed methods were applied for quantitation of the studied drug in its pure form with mean percentage recoveries of 100.47 ± 1.12, 100.17 ± 1.21 and 99.23 ± 1.26 for Methods I, II and III, respectively. Moreover the proposed methods were successfully applied for determination of ALD in different tablets. Proposals of the reactions pathways have been postulated. Conclusion The proposed spectrophotometric methods provided sensitive, specific and inexpensive analytical procedures for determination of the non-chromophoric drug alendronate either per se or in its tablet dosage forms without interference from common excipients. Graphical abstract

  12. Synthesis and application of aryl-ferrocenyl(pseudo-biarylic) complexes. Part 5. Design and synthesis of a new type of ferrocene-based planar chiral DMAP analogues. A new catalyst system for asymmetric nucleophilic catalysis

    DEFF Research Database (Denmark)

    Seitzberg, J.G; Dissing, C; Søtofte, Inger

    2005-01-01

    A new first-generation catalyst system for nucleophilic catalysis has been developed. It is based on a planar chiral ferrocene skeleton with either the potent nucleophile 4-(dimethylamino)pyridine (DMAP) or the related 4-nitropyridine N-oxide attached in either the 2- or the 3-position. The synth......A new first-generation catalyst system for nucleophilic catalysis has been developed. It is based on a planar chiral ferrocene skeleton with either the potent nucleophile 4-(dimethylamino)pyridine (DMAP) or the related 4-nitropyridine N-oxide attached in either the 2- or the 3-position...

  13. The kinetics of free radical metathetical and addition reactions in silane solutions

    International Nuclear Information System (INIS)

    Aloni, R.

    1976-12-01

    In this work radiolytic technique was employed for the initiation of free radical chainreactions in silane solution. The kinetic analysis of the chain mechanism in various solutions enabled the determination of the Arrhenius parameters for metathesis, addition and unimolecular decomposition reactions which make up the chainpropagation sequence in the systems studied. The following radical reactions were investigated: chlorine atom abstraction from chloromethanes by SiCl 3 and Et 3 Si radicals, and chlorine atom abstraction from chloroethanes by Et 3 Si radicals; unimolecular decomposition reactions and hydrogen atom abstraction, *from the solvent, of chloroethyl radicals in triethylsilane solutions; addition and abstraction reactions of Et 3 Si radicals with chloroolefins. Arrhenius parameters were determined for abstraction of chlorine atom from CH 3 Cl, CH 2 Cl 2 , CHCl 3 and CCl 4 , by SiCl 3 radicals and from CCl 4 , CHCl 3 , CH 2 Cl 2 , CCl 3 CN, C 2 Cl 5 H, sym-C 2 Cl 4 H 2 , asym-C 2 Cl 4 H 2 , 1.1.1-C 2 Cl 3 H 3 , 1.1.1-C 2 Dl 3 F 3 and 1.1-C 2 Cl 2 H 4 by Et 3 Si radicals. (author)

  14. Coiodação de alquenos com nucleófilos oxigenados: reações intermoleculares

    Directory of Open Access Journals (Sweden)

    Sanseverino Antonio Manzolillo

    2001-01-01

    Full Text Available A review on the electrophilic addition of iodine to alkenes in the presence of oxygen containing nucleophiles (cohalogenation reaction is presented. The intermolecular reactions are discussed with emphasis in methods of reaction and synthetic applications of the resulting vicinal iodo-functionalized products (iodohydrins, beta-iodoethers and beta-iodocarboxylates.

  15. Diazonium-functionalized thin films from the spontaneous reaction of p-phenylenebis(diazonium) salts

    OpenAIRE

    Marshall, Nicholas; Rodriguez, Andres; Crittenden, Scott

    2018-01-01

    Salts of the diazonium coupling agent p-phenylenebis(diazonium) form diazonium-terminated conjugated thin films on a variety of conductive and nonconductive surfaces by spontaneous reaction of the coupling agent with the surface. The resulting diazonium-bearing surface can be reacted with various organic and inorganic nucleophiles to form a functionalized surface. These surfaces have been characterized with voltammetry, XPS, infrared and Raman spectroscopy, and atomic force microscopy. Substr...

  16. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  17. Homoaromatics as intermediates in the substitution reactions of 1,2,4,5-tetrazines with ammonia and hydrazine

    International Nuclear Information System (INIS)

    Counotte-Potman, A.D.

    1981-01-01

    This thesis describes some nucleophilic substitution reactions between the red 1,2,4,5-tetrazines and hydrazine-hydrate or ammonia. Special attention was paid to the occurrence of the Ssub(N) (ANRORC) mechanism in these substitution reactions. This mechanism comprises a sequence of reactions, involving the Addition of a Nucleopile to a heteroaromatic species, followed by a Ring-Opening and Ring Closure reaction to the substitution product. 3-Alkyl(aryl)-1,2,4,5-tetrazines were found to undergo a Chichibabin hydrazination into 6-hydrazino-3-alkyl(aryl)-1,2,4,5-tetrazines on treatment with hydrazine-hydrate. The first step in this reaction sequence was the formation of a homoaromatic sigma-adduct. Subsequently an open-chain intermediate was observed by NMR, on raising the temperature. Finally the hydrazino compound is formed by ring closure. This reaction sequence can be considered as an Ssub(N)(ANRORC) process. With 15 N-labelled hydrazine, only part of the label was found to be built in the 1,2,4,5-tetrazine ring of the 6-hydrazino compounds. This is the first example of a reaction in which both the hydrazino compound with the 15 N-label in the ring and with the 15 N-label in the exocyclic hydrazino group are formed according to the Ssub(N)(ANRORC) mechanism. (Auth.)

  18. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation.

    Science.gov (United States)

    Shi, Huanhuan; Peng, Jianbiao; Li, Jianhua; Mao, Liang; Wang, Zunyao; Gao, Shixiang

    2016-11-05

    As active agents in cleaning and disinfecting products, antimicrobials have been widely spread in the environment and have drawn extensive attention as potential threats to the ecological system and human health. In this study, the laccase-catalyzed removal of two emerging antimicrobials, chlorophene (CP) and dichlorophen (DCP), was investigated under simulated environmental conditions. Intrinsic reaction kinetics showed that the removal of CP and DCP followed second-order reaction kinetics, first-order with respect to both the enzyme and the substrate concentration. It was also found that fulvic acid could suppress the transformation of CP and DCP by reversing the oxidation reactions through its action as a scavenger of the free radical intermediates produced from reactions between laccase and the substrates. Several reaction products were identified by a quadrupole time-of-flight mass spectrometer, and detailed reaction pathways were proposed. For both CP and DCP, direct polymerization was the principal pathway, and the coupling patterns were further corroborated based on molecular modeling. The nucleophilic substitution of chlorine by the hydroxyl group was observed, and further oxidation products capable of coupling with each other were also found. Additionally, toxicity evaluation tests using Scenedesmus obliquus confirmed that the toxicity of CP and DCP was effectively eliminated during the reaction processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Photo-oxidation of 6-thioguanine by UVA: the formation of addition products with low molecular weight thiol compounds.

    Science.gov (United States)

    Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter

    2010-01-01

    The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  20. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    Science.gov (United States)

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  1. α-Oxo-Ketenimines from Isocyanides and α-Haloketones: Synthesis and Divergent Reactivity.

    Science.gov (United States)

    Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2017-09-18

    The palladium-catalyzed reaction of α-haloketones with isocyanides afforded α-oxo-ketenimines through β-hydride elimination of the β-oxo-imidoyl palladium intermediates. Reaction of these relatively stable α-oxo-ketenimines with nucleophiles such as hydrazines, hydrazoic acid, amines, and Grignard reagent afforded pyrazoles, tetrazole, β-keto amidines, and enaminone, respectively, with high chemoselectivity. Whereas amines attack exclusively on the ketenimine functions, the formal [3+2] cycloaddition between N-monosubstituted hydrazines and α-oxo-ketenimines was initiated by nucleophilic addition to the carbonyl group. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Oxazolidine-2-thiones and thiazolidine-2-thiones as nucleophiles in intermolecular Michael additions.

    Science.gov (United States)

    Munive, Laura; Rivas, Veronica M; Ortiz, Aurelio; Olivo, Horacio F

    2012-07-06

    Conjugate addition of thiazolidinethiones and oxazolidinethiones to N-crotonylthiazolidinethiones and -oxazolidinethiones was observed in the presence of excess triethylamine in dichloromethane. The addition takes place by the nitrogen of the heterocycle with high diastereoselectivity. It was observed that the stereoselective addition occurs on the anti-s-cis conformation of the N-enoyl sulfur-containing heterocycle.

  3. Tyrosyl-DNA Phosphodiesterase I Catalytic Mutants Reveal an Alternative Nucleophile That Can Catalyze Substrate Cleavage*

    Science.gov (United States)

    Comeaux, Evan Q.; Cuya, Selma M.; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C.; Mobley, James A.; Bjornsti, Mary-Ann; van Waardenburg, Robert C. A. M.

    2015-01-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251

  4. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Zhang, Xianfeng, E-mail: ; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-11-05

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior.

  5. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    International Nuclear Information System (INIS)

    Xiong, Wei; Zhang, Xianfeng; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-01-01

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior

  6. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  7. Kinetic solvent isotope effects in the additions of bromine and 4-chlorobenzenesulfenyl chloride to alkenes and alkynes

    International Nuclear Information System (INIS)

    Modro, A.; Schmid, G.H.; Yates, K.

    1979-01-01

    The rates of bromination of selected alkenes and alkynes in methanol/methanol-d, acetic acid/acetic acid-d, and formic acid/formic acid-d have a nearly constant value of k/sub H//k/sub D/ = 1.23 +- 0.02. This kinetic solvent isotope effect is attributed to specific electrophilic solvation of the incipient bromide anion by hydrogen bonding in the rate-determining transition state. The rates of bromination were measured in two solvents having the same values of the solvent parameter Y but different nucleophilicities in order to assess the importance of nucleophilic solvation. Significant nucleophilic solvent assistance is found for only alkylacetylenes. The kinetic solvent isotope effects of the addition of 4-chlorobenzenesulfenyl chloride to selected alkenes and alkynes in acetic acid/acetic acid-d vary from 1.00 to 1.28. These data are consistent with two mechanisms: one involves a tetravalent sulfur intermediate while the second is the sulfur analogue of the S/sub N/2 mechanism

  8. Using chiral ionic liquid additives to enhance asymmetric induction in a Diels-Alder reaction.

    Science.gov (United States)

    Goodrich, P; Nimal Gunaratne, H Q; Hall, L; Wang, Y; Jin, L; Muldoon, M J; Ribeiro, A P C; Pombeiro, A J L; Pârvulescu, V I; Davey, P; Hardacre, C

    2017-01-31

    A bis-oxazoline ligand has been complexed using Cu(ii) and Zn(ii) trifluoromethanesulfonate and a range of chiral ionic liquid (CIL) additives based on natural products were used as a co-catalyst for a Diels-Alder reaction. The catalytic performance of these systems was compared for the asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene with and without the presence of a CIL additive. In the absence of the CIL, both catalysts resulted in low enantioselectivities in conventional solvents and ionic liquids. However, whilst only a minor effect of the CIL was observed for the Cu based catalyst, in the case of the Zn based catalyst, significant enhancements in endo enantioselectivity of up to 50% were found on the addition of a CIL.

  9. Nucleophilic 18F-Labeling of Spirocyclic Iodonium Ylide or Boronic Pinacol Ester Precursors - Advantages and Disadvantages

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Kristensen, Jesper Langgaard; Herth, Matthias Manfred

    2017-01-01

    The field of labeling electron-rich aryl compounds with nucleophilic [18F]fluoride has recently expanded with radiofluorination strategies that apply boronic esters or spirocyclic iodonium ylides as precursors. Herein, we present a direct comparison of these strategies by using nine chemically di...

  10. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Park Soo Youl [Interface Chemistry and Engineering Research Team, Korea Research Institute of Chemical Technology, Daejon (Korea, Republic of)

    2016-12-15

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory.

  11. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    International Nuclear Information System (INIS)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi; Park Soo Youl

    2016-01-01

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory

  12. Chemistry of [(Perfluoroalkyl)Methyl] Oxiranes. Regioselectivity of Ring Opening with O-Nucleophiles and the Preparation of Amphiphilic Monomers

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Améduri, B.; Boutevin, B.; Paleta, O.

    1997-01-01

    Roč. 84, č. 1 (1997), s. 53-61 ISSN 0022-1139 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluoroalkyl thiiranes * nucleophilic oxirane ring opening Subject RIV: CC - Organic Chemistry Impact factor: 0.714, year: 1997

  13. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  14. Synthesis of substituted gamma-lactams through petasis-type addition of boronic acids to N-acyliminium lons

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas Eiland

    2014-01-01

    Substituted g -lactams are important heterocyclic motifs found in various biologically active compounds and marketed drugs, such as glimepiride, doxapram, and levetiracetam. Among available m ethods for the synthesis of substituted g -lactams, the addition of nucleophiles to N -acyliminium ions...

  15. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  16. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  17. Protein alkylation, transcriptional responses and cytochrome c release during acrolein toxicity in A549 cells: influence of nucleophilic culture media constituents.

    Science.gov (United States)

    Thompson, Colin A; Burcham, Philip C

    2008-06-01

    Acrolein is a toxic combustion product that elicits apoptotic and/or necrotic cell death depending on the conditions under which exposure occurs. As a strong electrophile, side-reactions with nucleophilic media constituents seem likely to accompany study of its toxicity in vitro, but these reactions are poorly characterized. We have thus examined the effect of media composition on the toxicity of acrolein in A549 cells. Cells were exposed to acrolein in either Dulbecco's buffered saline (DBS) or F12 supplemented with various concentrations of fetal bovine serum. Cell viability was assessed using the MTT assay, while heme oxygenase-1 (HO-1) and cytoplasmic cytochrome c were measured as respective markers of transcriptional response and apoptosis. Protein damage was evaluated using the protein carbonyl assay. Compared to F12 media (with or without serum), maximal cell death as evaluated using the MTT assay, as well as adduction of intracellular proteins, occurred when cells were exposed to acrolein in DBS. In contrast, cytochrome c release was maximal in cells exposed to acrolein in serum-containing F12, conditions which inhibited protein modification and overt cell death. These findings highlight the need for careful attention to experimental conditions when conducting in vitro toxicological studies of reactive substances.

  18. Concentrated Aqueous Sodium Tosylate as Green Medium for Alkene Oxidation and Nucleophilic Substitution Reactions.

    Science.gov (United States)

    Sela, Tal; Lin, Xiaoxi; Vigalok, Arkadi

    2017-11-03

    A hydrotropic solution of highly concentrated sodium tosylate (NaOTs) can be used as a recyclable medium for the environmentally benign oxidation of conjugated alkenes with H 2 O 2 . Both uncatalyzed and metal-catalyzed reactions provided the corresponding oxidation products in higher yields than in pure water or many common organic solvents.

  19. Synthesis of N-substituted a,a-difluoro-b-aminophosphonates by addition of diethyl lithiodifluoromethylphosphonate to imines

    Czech Academy of Sciences Publication Activity Database

    Cherkupally, Prabhakar; Beier, Petr

    2012-01-01

    Roč. 141, Sep (2012), s. 76-82 ISSN 0022-1139 R&D Projects: GA ČR GP203/08/P310 Institutional support: RVO:61388963 Keywords : nucleophilic addition * difluorophosphonate * aminophosphonate * imines Subject RIV: CC - Organic Chemistry Impact factor: 1.939, year: 2012

  20. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    Science.gov (United States)

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  1. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Renato Contreras

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  2. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    Science.gov (United States)

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures.

  3. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  4. Reactions of diiron m-aminocarbyne complexes containing nitrile ligands

    Directory of Open Access Journals (Sweden)

    Busetto Luigi

    2003-01-01

    Full Text Available The acetonitrile ligand in the mu-aminocarbyne complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCMe(Cp2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c (Xyl = 2,6-Me2C6H3 is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{mu-CN(MeR}(mu-CO(CO(X(Cp2 ] (X = Br, I, CN. Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic alpha hydrogens has been used in place of MeCN to form the complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCCMe3 (Cp2][SO3CF3] (7a-c. Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me, followed by treatment with HSO3CF3, yielded the imino complex [Fe2{mu-CN(MeXyl}(mu-CO(CO {N(HC(CºCC6H4Me-4CMe3}(Cp 2][SO3CF3 ] (8, obtained via acetilyde addition at the coordinated NCCMe3.

  5. Study of Ni/Si(1 0 0) solid-state reaction with Al addition

    International Nuclear Information System (INIS)

    Huang Yifei; Jiang Yulong; Ru Guoping; Li Bingzong

    2008-01-01

    The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no Ni x Al y phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed

  6. Peroxidase-type reactions suggest a heterolytic/nucleophilic O–O joining mechanism in the heme-dependent chlorite dismutase†

    Science.gov (United States)

    Mayfield, Jeffrey A.; Blanc, Béatrice; Rodgers, Kenton R.; Lukat-Rodgers, Gudrun S.; DuBois, Jennifer L.

    2015-01-01

    Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O–O bond forming reaction. The O–O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl–O cleavage of the natural substrate and subsequent O–O bond formation. While reactions with H2O2 resulted in slow destruction of the heme, at acidic pH, heterolytic cleavage of the O–O bond of PAA cleanly yielded the ferryl porphyrin cation radical (Compound I). At alkaline pH, the reaction proceeds more rapidly and the first observed intermediate is a ferryl heme. Freezequench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that Compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl–O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O–O bond formation from chlorite. PMID:24001266

  7. Concise Access to 2-Aroylbenzothiazoles by Redox Condensation Reaction between o-Halonitrobenzenes, Acetophenones, and Elemental Sulfur.

    Science.gov (United States)

    Nguyen, Thanh Binh; Pasturaud, Karine; Ermolenko, Ludmila; Al-Mourabit, Ali

    2015-05-15

    A wide range of 2-aroylbenzothiazoles 3 including some pharmacologically relevant derivatives can be obtained in high yields by simply heating o-halonitrobenzenes 1, acetophenones 2, elemental sulfur, and N-methylmorpholine. This three-component nitro methyl coupling was found to occur in an excellent atom-, step-, and redox-efficient manner in which elemental sulfur played the role of nucleophile building block and redox moderating agent to fulfill electronic requirements of the global reaction.

  8. Modification of the performance of WO3-ZrO2 catalysts by metal addition in hydrocarbon reactions

    Directory of Open Access Journals (Sweden)

    Gerardo Carlos Torres

    2012-01-01

    Full Text Available A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.

  9. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  10. Selenocysteine in thiol/disulfide-like exchange reactions.

    Science.gov (United States)

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  11. Computer-assisted study on the reaction between pyruvate and ylide in the pathway leading to lactyl-ThDP.

    Science.gov (United States)

    Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J

    2012-08-01

    In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.

  12. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    Science.gov (United States)

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  13. One-step versus two-step mechanism of Diels-Alder reaction of 1-chloro-1-nitroethene with cyclopentadiene and furan.

    Science.gov (United States)

    Jasiński, Radomir

    2017-08-01

    DFT computational study shows that Diels-Alder (DA) reactions of 1-chloro-1-nitroethene with cyclopentadiene and furan have polar nature. However, their mechanism is substantially different. In particular, 1-chloro-1-nitroethene react with cyclopentadiene according to one-step mechanism. In the same time, more favourable channel associated with the P-DA reaction between furan and 1-chloro-1-nitroethene is a domino process, that comprises an initial hetero-Diels-Alder reaction yielding a [2+4] cycloadduct, which experiences a subsequent [3,3] sigmatropic shift to yield the expected formal [4+2] cycloadduct. This is a consequence of more polar nature of reaction, due to higher nucleophilicity of furan in comparison to cyclopentadiene. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  15. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: Identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes

    International Nuclear Information System (INIS)

    Thompson, S.; Mayerl, F.; Walsh, C.T.; Peoples, O.P.; Masamune, S.; Sinskey, A.J.

    1989-01-01

    Thiolase proceeds via covalent catalysis involving an acetyl-S-enzyme. The active-site thiol nucleophile is identified as Cys 89 by acetylation with [ 14 C]acetyl-CoA, rapid denaturation, tryptic digestion, and sequencing of the labeled peptide. The native acetyl enzyme is labile to hydrolytic decomposition with t 1/2 of 2 min at pH 7, 25 degree C. Cys 89 has been converted to the alternate nucleophile Ser 89 by mutagenesis and the C89S enzyme overproduced, purified, and assessed for activity. The Ser 89 enzyme retains 1% of the V max of the Cys 89 enzyme in the direction of acetoacetyl-CoA thiolytic cleavage and 0.05% of the V max in the condensation of two acetyl-CoA molecules. A covalent acetyl-O-enzyme intermediate is detected on incubation with [ 14 C]acetyl-CoA and isolation of the labeled Ser 89 -containing tryptic peptide. Comparisons of the Cys 89 and Ser 89 enzymes have been made for kinetic and thermodynamic stability of the acetyl enzyme intermediates both by isolation and by analysis of [ 32 P]CoASH/acetyl-CoA partial reactions and for rate-limiting steps in catalysis with trideuterioacetyl-CoA

  16. Synthesis of a novel chemotype via sequential metal-catalyzed cycloisomerizations

    Directory of Open Access Journals (Sweden)

    Bo Leng

    2012-08-01

    Full Text Available Sequential cycloisomerizations of diynyl o-benzaldehyde substrates to access novel polycyclic cyclopropanes are reported. The reaction sequence involves initial Cu(I-mediated cycloisomerization/nucleophilic addition to an isochromene followed by diastereoselective Pt(II-catalyzed enyne cycloisomerization.

  17. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Kafka, František; Pohl, Radek; Císařová, I.; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2016-01-01

    Roč. 2016, č. 22 (2016), s. 3862-3871 ISSN 1434-193X R&D Projects: GA ČR GA13-40188S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : tandem reactions * nitrogen heterocycles * Michael addition * radical reactions * cyclization * enolates Subject RIV: CC - Organic Chemistry Impact factor: 2.834, year: 2016

  18. Chiral four-membered cyclic nitrones; asymmetric induction in the (4+2)-cycloaddition reaction of chiral ynamines and nitroalkenes

    NARCIS (Netherlands)

    van Elburg, P.A.; Honig, G.W.N.; Reinhoudt, David

    1987-01-01

    Chiral four-membered cyclic nitrones were synthesized by the asymmetric (4+2)-cycloaddition of nitroalkenes 1 and chiral ynamines 2. The subsequent stereoselective addition of nucleophiles to these nitrones enabled the synthesis of chiral N-hydroxyazetidines.

  19. Arylation of beta, gamma-unsaturated lactones by a Heck-Matsuda reaction: an unexpected route to aryldiazene butenolides and pyridazinones

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jason G.; Correia, Carlos Roque D., E-mail: [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    The palladium catalysed coupling of aryldiazonium salts with {beta}-{gamma}-unsaturated lactones under basic conditions has been investigated. Both (3H)-furanone and {alpha}-angelicalactone were evaluated as substrates in the Heck Matsuda reaction but both failed to afford the desired arylated butenolides. Under basic conditions, {beta}-{gamma}-unsaturated lactones generate highly nucleophilic enolates that preferentially undergo azo coupling reactions with arenediazonium salts to afford aryldiazene butenolides. The electronic and steric effect of the substituents on the aryldiazonium salt in the azo coupling reaction is described. Aryldiazene-lactone derivatives were obtained in good yields from a highly facile and straightforward procedure. An aminoisomaleimide was formed from (3H)-furanone and cyclized to the corresponding pyridazinones in modest yield. (author)

  20. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  1. Use of a microwave cavity to reduce reaction times in radiolabelling with [11C]cyanide

    International Nuclear Information System (INIS)

    Thorell, J.-O.; Stone-Elander, S.; Elander, N.

    1992-01-01

    Advantages of using a microwave cavity over thermal treatment are demonstrated for radiolabelling reactions with [ 11 C]cyanide. For comparison purposes, two literature syntheses involving typical cyanide chemistry at rather vigorous conditions were investigated: cyano-de-halogenation with subsequent hydrolysis of the nitrile and the Bucher-Strecker synthesis of an aromatic amino acid. Comparable yields were obtained with intensities <100 W in reaction times that were 1/15 to 1/20th those used in thermal methods. Even rates of slower nucleophilic substitutions could be increased by manipulating the polarity of the medium. For the short-lived radionuclide carbon-11, such time gains result in radioactivity gains at the end-of-synthesis on the order of 70-100%. (Author)

  2. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  3. Reaction of Tosylmethyl Isocyanide with N-Heteroaryl Formamidines: an Alternative Approach to the Synthesis of N-Heteroaryl Tosylimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Gomezgarcia, Omar; Salgadozamora, Hector; Reyesarellano, Aliciam; Camposaldrete, Elena; Peraltacruz, Javier [Departamento Quimica Organica, Colonia (Mexico)

    2013-09-15

    In conclusion, an alternative procedure was developed under mild conditions for the synthesis of 2-(4-tosylimidazo-1-yl)pyridines and pyrimidines by the reaction of TosMIC with the corresponding heteroaryl N,N'-dimethyl form-amidines. This approach does not involve a nucleophilic displacement of a leaving group and constitutes a further application of amidines, in which TosMIC acts as both a nucleophile and an electrophile on the heteroaryl formamidine. This process offers advantages over previously reported procedures. Tosyl methyl isocyanide (TosMIC), a multipurpose commercially available 3-unit synthon introduced by Van Leusen, reacts with a variety of groups to give heterocycles. It is important to emphasize that treatment of TosMIC with various functional groups leads to the formation of the imidazole nucleus, such as is the case with imines, imidoyl chlorides, isothiocyanates, nitrile and ethoxy methylene amino. However, only the latter group yields N-heterocycle imidazoles.

  4. Reactivity of nitrido complexes of ruthenium(VI), osmium(VI), and manganese(V) bearing Schiff base and simple anionic ligands.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-02-18

    Nitrido complexes (M≡N) may be key intermediates in chemical and biological nitrogen fixation and serve as useful reagents for nitrogenation of organic compounds. Osmium(VI) nitrido complexes bearing 2,2':6',2″-terpyridine (terpy), 2,2'-bipyridine (bpy), or hydrotris(1-pyrazolyl)borate anion (Tp) ligands are highly electrophilic: they can react with a variety of nucleophiles to generate novel osmium(IV)/(V) complexes. This Account describes our recent results studying the reactivity of nitridocomplexes of ruthenium(VI), osmium(VI), and manganese(V) that bear Schiff bases and other simple anionic ligands. We demonstrate that these nitrido complexes exhibit rich chemical reactivity. They react with various nucleophiles, activate C-H bonds, undergo N···N coupling, catalyze the oxidation of organic compounds, and show anticancer activities. Ruthenium(VI) nitrido complexes bearing Schiff base ligands, such as [Ru(VI)(N)(salchda)(CH3OH)](+) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion), are highly electrophilic. This complex reacts readily at ambient conditions with a variety of nucleophiles at rates that are much faster than similar reactions using Os(VI)≡N. This complex also carries out unique reactions, including the direct aziridination of alkenes, C-H bond activation of alkanes and C-N bond cleavage of anilines. The addition of ligands such as pyridine can enhance the reactivity of [Ru(VI)(N)(salchda)(CH3OH)](+). Therefore researchers can tune the reactivity of Ru≡N by adding a ligand L trans to nitride: L-Ru≡N. Moreover, the addition of various nucleophiles (Nu) to Ru(VI)≡N initially generate the ruthenium(IV) imido species Ru(IV)-N(Nu), a new class of hydrogen-atom transfer (HAT) reagents. Nucleophiles also readily add to coordinated Schiff base ligands in Os(VI)≡N and Ru(VI)≡N complexes. These additions are often stereospecific, suggesting that the nitrido ligand has a directing effect on the incoming nucleophile. M≡N is also

  5. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: ; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  6. The periodic table and the intrinsic barrier in s(n)2 reactions.

    Science.gov (United States)

    Yi, Ren; Basch, Harold; Hoz, Shmaryahu

    2002-08-23

    The identity S(N)2 reactions on nitrogen (see eq 3) with nucleophiles having the general structure H(n)()X(-) where X belongs to the group of nonmetallic elements which do not border the line separating them from the metallic elements (X = F, Cl, Br, I, O, S, Se, N, P, and C) were studied at the G2+ level. The results show that, similarly to the previously observed phenomenon for S(N)2 reaction on carbon (J. Am. Chem. Soc. 1999, 121, 7724), the Periodic Table, through the valence of the element X, controls the intrinsic barrier for the reaction. The average intrinsic barriers obtained for nitrogen substrates were 20, 27, 39, and 57 kcal/mol for the mono-, di-, tri-, and tetravalent X's, respectively. It is also concluded that the intrinsic barriers are similar for N- and C-based substrates and dimethyl substitution on both raises the intrinsic barrier by ca. 10 kcal/mol.

  7. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  8. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  9. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  10. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  11. Transition-metal-free synthesis of N-(1-alkenyl)imidazoles by potassium phosphate-promoted addition reaction of alkynes to imidazoles.

    Science.gov (United States)

    Lu, Linhua; Yan, Hong; Liu, Defu; Rong, Guangwei; Mao, Jincheng

    2014-01-01

    The addition reaction of alkynes to N-heterocycles by simply heating in DMSO with potassium phosphate is reported. Good yields with high stereoselectivity could be achieved for a range of substrates. The scope is quite general for both amines and phenylacetylenes. In addition, internal alkynes and α-bromostyrene were also examined in this reaction. This process is efficient and useful for the synthesis of (Z)-N-(1-alkenyl)imidazoles and related Z products. Thus, the reaction is useful because of the importance of the imidazole scaffold. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Fluorogenic Aromatic Nucleophilic Substitution Reaction for Demonstrating Normal-Phase Chromatography and Isolation of Nitrobenzoxadiazole Chromophores

    Science.gov (United States)

    Key, Jessie A.; Li, Matthew D.; Cairo, Christopher W.

    2011-01-01

    Normal-phase chromatography is an essential technique for monitoring chemical reactions, identifying the presence of specific components, as well as the purification of organic compounds. An experiment to facilitate the instruction and understanding of the concepts behind normal-phase chromatography at the introductory and intermediate…

  13. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    Science.gov (United States)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  14. Modification of the performance of WO{sub 3}-ZrO{sub 2} catalysts by metal addition in hydrocarbon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Gerardo Carlos; Manuale, Debora Laura; Benitez, Viviana Monica; Vera, Carlos Roman; Yori, Juan Carlos, E-mail: [Instituto de Investigaciones en Catalisis y Petroquimica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Cientifica y Tecnicas, Santiago del Estero Santa Fe (Argentina)

    2012-07-01

    A study of the different hydrocarbon reactions over Ni doped WO{sub 3}-ZrO{sub 2} catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane) increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition. (author)

  15. Solvent effect on the rate and equilibrium of reaction between 10-phenylphenoxarsine and methyl iodide

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1990-01-01

    Effect of solvent nature on nucleophilic capacity of three-coordinated arsenic and the equilibrium state of 10-phenylphenoxarsine (PA) reaction with methyl iodide are studied. Kinetic investigations are carried out by the conductometry at 24,35,45 deg C. It is established that quaternization of PA with methyl iodide when substituting a solvent (ketone for alcohol) increases 3-14 times with simultaneous growth of the activation energy value. When transforming from aprotic solvents to protic ones PA interaction equilibrium with methyl iodide shifts to the side of arsonic salt formation

  16. The synthesis of 1-11C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions

    International Nuclear Information System (INIS)

    Laangstroem, B.; Antoni, G.; Gullberg, P.; Halldin, C.; Naagren, K.; Rimland, A.; Svaerd, H.

    1986-01-01

    New 11 C-labelled precursors [1- 11 C]ethyl,[1- 11 C]propyl, [1- 11 C]butyl, and [1- 11 C]isobutyl iodides have been prepared by a 3-step reaction route using a one-pot system. The labelled iodides were obtained in 20-55#percent# radiochemical yields and 65-95#percent# radiochemical purities, with a total time for synthesis of the order of 10-14 min. The labelled iodides have been used in alkylation reactions with nitrogen, oxygen and carbon nucleophiles. The nitrogen alkylation reactions are exemplified by the synthesis of the analgetics N-[1- 11 C-ethyl]iodocaine and N-[1- 11 C-butyl] bupivacaine. The synthesis of 3-nitrophenyl[1- 11 C]propyl ether is also presented in this paper as an example of an oxygen alkylation. (author)

  17. Rhodium Phosphine-π-Arene Intermediates in the Hydroamination of Alkenes

    Science.gov (United States)

    Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.; Hartwig, John F.

    2011-01-01

    A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine are reported. The active catalyst is shown to contain the phosphine ligand bound in a κ1, η6 form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C=C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes. PMID:21309512

  18. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  19. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  20. First kinetic discrimination between carbon and oxygen reactivity of enols.

    Science.gov (United States)

    García-Río, Luis; Mejuto, Juan C; Parajó, Mercedes; Pérez-Lorenzo, Moisés

    2008-11-07

    Nitrosation of enols shows a well-differentiated behavior depending on whether the reaction proceeds through the carbon (nucleophilic catalysis is observed) or the oxygen atom (general acid-base catalysis is observed). This is due to the different operating mechanisms for C- and O-nitrosation. Nitrosation of acetylacetone (AcAc) shows a simultaneous nucleophilic and acid-base catalysis. This simultaneous catalysis constitutes the first kinetic evidence of two independent reactions on the carbon and oxygen atom of an enol. The following kinetic study allows us to determine the rate constants for both reaction pathways. A similar reactivity of the nucleophilic centers with the nitrosonium ion is observed.

  1. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  2. Deep eutectic solvents as performance additives in biphasic reactions

    NARCIS (Netherlands)

    Lan, Dongming; Wang, Xuping; Zhou, Pengfei; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Deep eutectic solvents act as surfactants in biphasic (hydrophobic/aqueous) reaction mixtures enabling higher interfacial surface areas at lower mechanical stress as compared to simple emulsions. Exploiting this effect the rate of a chemoenzymatic epoxidation reaction was increased more than

  3. Development of PhSCF2CF2SiMe3 as a Tandem Anion and Radical Tetrafluoroethylene Equivalent: Preparation of Tetrafluoroethyl-Substituted Alcohols and Tetrafluorotetrahydropyrans

    Czech Academy of Sciences Publication Activity Database

    Chernykh, Yana; Hlat-Glembová, Katarina; Klepetářová, Blanka; Beier, Petr

    -, č. 24 (2011), s. 4528-4531 ISSN 1434-193X R&D Projects: GA ČR GAP207/11/0421 Institutional research plan: CEZ:AV0Z40550506 Keywords : fluorine * alkylation * nucleophilic addition * radical reactions * oxygen heterocycles Subject RIV: CC - Organic Chemistry Impact factor: 3.329, year: 2011

  4. Simulating chemical reactions in ionic liquids using QM/MM methodology.

    Science.gov (United States)

    Acevedo, Orlando

    2014-12-18

    The use of ionic liquids as a reaction medium for chemical reactions has dramatically increased in recent years due in large part to the numerous reported advances in catalysis and organic synthesis. In some extreme cases, ionic liquids have been shown to induce mechanistic changes relative to conventional solvents. Despite the large interest in the solvents, a clear understanding of the molecular factors behind their chemical impact is largely unknown. This feature article reviews our efforts developing and applying mixed quantum and molecular mechanical (QM/MM) methodology to elucidate the microscopic details of how these solvents operate to enhance rates and alter mechanisms for industrially and academically important reactions, e.g., Diels-Alder, Kemp eliminations, nucleophilic aromatic substitutions, and β-eliminations. Explicit solvent representation provided the medium dependence of the activation barriers and atomic-level characterization of the solute-solvent interactions responsible for the experimentally observed "ionic liquid effects". Technical advances are also discussed, including a linear-scaling pairwise electrostatic interaction alternative to Ewald sums, an efficient polynomial fitting method for modeling proton transfers, and the development of a custom ionic liquid OPLS-AA force field.

  5. Synthesis of 1-/sup 11/C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Laangstroem, B.; Antoni, G.; Gullberg, P.; Halldin, C.; Naagren, K.; Rimland, A.; Svaerd, H.

    1986-01-01

    New /sup 11/C-labelled precursors (1-/sup 11/C)ethyl,(1-/sup 11/C)propyl, (1-/sup 11/C)butyl, and (1-/sup 11/C)isobutyl iodides have been prepared by a 3-step reaction route using a one-pot system. The labelled iodides were obtained in 20-55% radiochemical yields and 65-95% radiochemical purities, with a total time for synthesis of the order of 10-14 min. The labelled iodides have been used in alkylation reactions with nitrogen, oxygen and carbon nucleophiles. The nitrogen alkylation reactions are exemplified by the synthesis of the analgetics N-(1-/sup 11/C-ethyl)iodocaine and N-(1-/sup 11/C-butyl) bupivacaine. The synthesis of 3-nitrophenyl(1-/sup 11/C)propyl ether is also presented in this paper as an example of an oxygen alkylation.

  6. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    Energy Technology Data Exchange (ETDEWEB)

    Acik, Muge [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Materials Science; Guo, Fangmin [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Lee, Byeongdu [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Rosenberg, Richard A. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Mitchell, JF [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Darling, Seth B. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

  7. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  8. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution

    Science.gov (United States)

    Renata, Hans; Wang, Z. Jane

    2015-01-01

    High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694

  9. Gamma-induced reactions of bromo-ethane with olefines. Addition of ethyl radicals to hexene-1 and propylene

    International Nuclear Information System (INIS)

    Myshkin, V.E.; Shostenko, A.G.; Zagorets, P.A.; Pchelkin, A.I.; Markova, K.G.

    1978-01-01

    Radiation interaction of bromo-ethane with propylene and 1-hexene has been studied with the aim to investigate the action of γ-radiation on bromalkanes. The absorbed dose rate is 50 rad/s. The reaction products separated by preparative chromatography have been identified with infrared spectroscopy, elemental, chromatographic, and other physico-chemical methods of analysis. It has been established that the reaction with propylene gives rise to telomers whereas interaction of bromo-ethane with 1-hexene yields only the addition product (4-bromoctane). The activation energy of the reactions of adding ethyl radicals to 1-hexene and propylene has been found equal to (3.8+-0.4 kcal/mol) and (2.2+-0.2 kcal/mol), respectively. The activation energy of the reaction of chain transfer through bromo-ethane is (3.7+-0.3 kcal/mol.)

  10. Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland-Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B.

    Science.gov (United States)

    Clarke, Paul A; Nasir, Nadiah Mad; Sellars, Philip B; Peter, Alejandra M; Lawson, Connor A; Burroughs, James L

    2016-07-12

    6-Substituted-2H-dihydropyran-4-one products of the Maitland-Japp reaction have been converted into tetrahydropyrans containing uncommon substitution patterns. Treatment of 6-substituted-2H-dihydropyran-4-ones with carbon nucleophiles led to the formation of tetrahydropyran rings with the 2,6-trans-stereochemical arrangement. Reaction of the same 6-substituted-2H-dihydropyran-4-ones with l-Selectride led to the formation of 3,6-disubstituted tetrahydropyran rings, while trapping of the intermediate enolate with carbon electrophiles in turn led to the formation 3,3,6-trisubstituted tetrahydropyran rings. The relative stereochemical configuration of the new substituents was controlled by the stereoelectronic preference for pseudo-axial addition of the nucleophile and trapping of the enolate from the opposite face. Application of these methods led to a synthesis of the potent anti-osteoporotic diarylheptanoid natural product diospongin B.

  11. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  12. A review on chemistry of a powerful organic electron acceptor 7, 7, 8, 8, tetracynoquinodimethane (TCNQ)

    Science.gov (United States)

    Singh, Yadunath

    2018-05-01

    Organic semiconductors have so far found extensive practical applications similar to inorganic semiconductors. Interest in these compounds has been stimulated by the synthesis of several powerful electron acceptors, such as tetracynoethylene (TCNE), 7, 7, 8, 8, tetracynoquinodimethane (TCNQ) and cyno-p-benzoquinone. In this connection TCNQ is of particular interest, due to presence of four powerful electron accepting groups in its molecule. Nucleophillic addition reactions, which are rarely encountered among unsaturated compounds, as well as addition reactions proceeding via a one electron transfer stage are characteristic of this substance.

  13. Innocuous oil as an additive for reductive reactions involving zero valence iron

    International Nuclear Information System (INIS)

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen

  14. Theoretical study of nucleophilic halogenalkylation of propylene ...

    Indian Academy of Sciences (India)

    Administrator

    aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong,. People's ... The overall barrier energies for reaction (1) (X = F), reaction (1) (X = Cl), reaction (2) (X = F), and reac- tion (2) (X ... ing in this field.

  15. Highly enantio- and diastereoselective reactions of γ-substituted butenolides through direct vinylogous conjugate additions

    KAUST Repository

    Zhang, Wen; Tan, Davin; Lee, Richmond; Tong, Guanghu; Chen, Wenchao; Qi, Baojian; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    The strength of the weak: An L-tert-leucine-derived amine-thiourea catalyst (see scheme, green box) promotes the asymmetric vinylogous conjugate addition reaction between γ-aryl- and alkyl-substituted butenolides with the butenamides and enoates shown. Computational studies show the preference for the observed stereochemistry is a result of favourable weak non-bonding interactions, which stabilize the transition state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly enantio- and diastereoselective reactions of γ-substituted butenolides through direct vinylogous conjugate additions

    KAUST Repository

    Zhang, Wen

    2012-09-05

    The strength of the weak: An L-tert-leucine-derived amine-thiourea catalyst (see scheme, green box) promotes the asymmetric vinylogous conjugate addition reaction between γ-aryl- and alkyl-substituted butenolides with the butenamides and enoates shown. Computational studies show the preference for the observed stereochemistry is a result of favourable weak non-bonding interactions, which stabilize the transition state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Accessing 2-substituted piperidine iminosugars by organometallic addition/intramolecular reductive amination: aldehyde vs. nitrone route.

    Science.gov (United States)

    Mirabella, S; Fibbi, G; Matassini, C; Faggi, C; Goti, A; Cardona, F

    2017-11-07

    A dual synthetic strategy to afford 2-substituted trihydroxypiperidines is disclosed. The procedure involved Grignard addition either to a carbohydrate-derived aldehyde or to a nitrone derived thereof, and took advantage of an efficient ring-closure reductive amination strategy in the final cyclization step. An opposite diastereofacial preference was demonstrated in the nucleophilic attack to the two electrophiles, which would finally produce the same piperidine diastereoisomer as the major product. However, use of a suitable Lewis acid in the Grignard addition to the nitrone allowed reversing the selectivity, giving access to 2-substituted piperidines with the opposite configuration at C-2.

  18. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  19. Electrophilic trifluoromethylselenolation of terminal alkynes with Se-(trifluoromethyl 4-methylbenzenesulfonoselenoate

    Directory of Open Access Journals (Sweden)

    Clément Ghiazza

    2017-12-01

    Full Text Available Herein the nucleophilic addition of Se-(trifluoromethyl 4-methylbenzenesulfonoselenoate, a stable and easy-to-handle reagent, to alkynes is described. This reaction provides trifluoromethylselenylated vinyl sulfones with good results and the method was extended also to higher fluorinated homologs. The obtained compounds are valuable building blocks for further syntheses of fluoroalkylselenolated molecules.

  20. Reactions of homolytic addition of polyhalogenoalkanes to unsafurated tin-organic compounds and their application in organic synthesis

    International Nuclear Information System (INIS)

    Rakhlin, V.I.; Mirskov, R.G.; Voronkov, M.G.

    1996-01-01

    Reactions of homolytic addition of polyhalogenoalkanes; including iodine compounds, to tin trialkylalkenyl derivatives are considered. They may be used as convenient method for synthesis of various polyhalogenoalkylsubstituted alicycles and heterocycles: cyclopropane, 1.3-dioxocycloalkanes, thiacycloalkanes, various nitrogen-containing heterocycles. 27 refs

  1. Density functional theoretical study on the C-F and C-O oxidative addition reaction at an AI center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seong [Dept. of Science Education, Kyungnam University, Masan (Korea, Republic of); Cho, Hyun; Hwang, Sungu [Dept. of Nanomechatronics Engineering, Pusan National University, Miryang (Korea, Republic of)

    2017-02-15

    In this study, B3LYP/LACVP** level calculations were chosen because the level of theory was applied successfully to calculations of the thermodynamic and kinetic features of the oxidative addition reactions of alkyl and aryl halides to pincer-type complexes. This study examined the effects of the substituents on the phenyl rings of the Al(I) center. Isopropyl side chains in the phenyl rings attached to N atoms of the pincer ligand were replaced with a methyl (Me) (2) or tertiary butyl ( t Bu) group. The oxidative addition of C[BOND]F and C[BOND]O bonds to an Al (I) center was investigated computationally by DFT calculations. The geometries, thermodynamic, and kinetic features were in good agreement with the experimental data, as in previous studies on the transition metal complexes. The computational results showed that the DFT calculations could provide qualitative insight into the reactivity and thermodynamics of the oxidative addition reactions of C[BOND]F bonds.

  2. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  3. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  4. Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Ma Tianyuan; Xia Zhiguo [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Liao Libing, E-mail: [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-02-15

    Well-dispersed hydroxyapatite (HA) nanorods with different morphologies were synthesized by a hydrothermal method in oleic acid, ethanol and water reaction system, and the surfactant assisted modifications effect was also comparatively studied. The structure and morphology of samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM), respectively. The effect of reaction systems and surfactant additives on the morphology evolution of HA nanorods were discussed in detail. The results showed that the controlled experimental conditions in the systems, such as the content ratio of oleic acid/ethanol, pH value and the content ratio of Ca/P source had an significant effect on the morphology evolution of as-prepared HA nanorods. Further, the selected surfactant additives, such as cetyltriethylammnonium bromide (CTAB), sodium dodecyl sulfate (K12) also play an important role in the formation of the uniform morphology of HA nanorods. Some possible formation mechanisms of the HA nanorods in the present reaction systems is proposed.

  5. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    Science.gov (United States)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  6. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of Possible Maillard Reaction Between Acyclovir and Dextrose upon Dilution Prior to Parenteral Administration.

    Science.gov (United States)

    Siahi Shadbad, Mohammad Reza; Ghaderi, Faranak; Hatami, Leila; Monajjemzadeh, Farnaz

    2016-12-01

    In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.

  8. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  9. Hydrolyses of 2- and 4-fluoro N-heterocycles. 3. Nucleophilic catalysis by buffer bases in the general acid catalyzed hydrolysis of 4-fluoroquinaldine

    International Nuclear Information System (INIS)

    Muscio, O.J. Jr.; Theobald, P.G.; Rutherford, D.R.

    1989-01-01

    Pseudo-first-order rate constants and catalytic rate constants are reported for the buffer-catalyzed hydrolysis of 4-fluoroquinaldine (1) in carboxylic acid and phosphoric acid buffers. The buffer catalysis is consistent with specific acid, general base catalysis. Hydrolyses in 99% 18 O-labeled acetate, indicate that the predominant catalytic mode for the acetic acid/acetate buffer system is nucleophilic catalysis by the acetate anion coupled with specific acid catalysis. The other buffers presumably react in a similar manner. A Broensted-type plot of the catalytic rate constants for hydrolysis of protonated 1 has a slope of 0.57, with formate deviating positively from the line determined by acetate, chloroacetate, monohydrogen phosphate, and water. This Broensted slope is less than that found for hydrolysis of the 2-fluoro-1-methylpyridinium ion, 2, but is still within the range expected for aromatic nucleophilic substitution. Rate constants and 18 O-labeling results for hydrolysis in acetate buffer are also reported for 4-acetoxyquinaldine (3), the proposed intermediate in the acetate-catalyzed hydrolysis of 1. 15 references, 5 figures, 3 tables

  10. Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan)

    Science.gov (United States)

    Rosan, Reviewed Alan M.

    2000-06-01

    This concise book joins the series of Wiley Interscience special topic publications. In seven chapters it selectively reviews the burgeoning literature on organic reactions conducted in water or in aqueous media as a reaction cosolvent, nicely complementing another recent book on the subject by Grieco. Following a short introduction there are six chapters that vary in length from 10 to 50 pages; they cover pericyclic reactions, nucleophilic additions and substitutions, metal-mediated reactions, transition metal-catalyzed reactions, oxidation and reduction reactions, and industrial applications. These chapters, each of which is prefaced with a short provocative quotation, also vary in depth, containing from 11 to more than 180 references. The literature is complete through 1996 and commendably includes citations of original papers by Barbier, Faraday, Frankland, Grignard, Kolbe, Lapworth, and Reformatsky as well as references to selected U.S. and foreign patents and the Russian literature. There is a subject index but no author index. This book is timely and effective. From the title, one might expect a broad discussion of the unique properties of water and water-soluble components (salts, surfactants, etc.) that would be thought to bear on organic reactivity. The first chapter opens by noting that water is the most abundant volatile material in comets and briefly describes those properties that suggest its utility as a solvent or cosolvent, summarizing the potential technical, economic, and environmental advantages. Also described are the remarkable changes in density, conductance, heat capacity, dielectric constant, and ionization constant that accompany the transition to the critical point, but the emphasis here is on the effect of water under non-critical conditions. Discussion of the structure of liquid water and the role of hydrogen bonding in mediating molecular recognition events is abbreviated. In fact, the term "hydrogen bond" is surprisingly absent from

  11. Stereocontrolled generation of nucleophilic (Z)- or (E)-α-fluoroalkenylchromium reagents via carbon-fluorine bond activation: highly stereoselective synthesis of (E)- or (Z)-β-fluoroallylic alcohols.

    Science.gov (United States)

    Nihei, Takashi; Yokotani, Saya; Ishihara, Takashi; Konno, Tsutomu

    2014-02-14

    Highly nucleophilic (Z)- or (E)-α-fluoroalkenylchromium species could be generated in a stereoselective manner via C-F bond activation of CBrF2-containing molecules, and they reacted smoothly with various aldehydes to give (E)- or (Z)-β-fluoroallylic alcohol derivatives in high yields, respectively.

  12. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  13. Effect of Ag additions on the β phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T., E-mail: [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Carvalho, T.M. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Santos, C.M.A.; Magdalena, A.G. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The results suggest a multi-step process involving reversible reactions. • Ag solubilizes preferably at the Cu matrix. • Ag additions decrease the activation energy for the process. - Abstract: The influence of 4 and 5 wt.%Ag additions on the kinetics of β [T{sub 7}-(CuMn){sub 3}Al] phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that the conversion dependence of the activation energy has a descending shape, suggesting a multi-step process involving reversible reactions. The presence of Ag facilitates the formation of the β phase. The results also showed that the Ag precipitates formation includes the dissolution of Mn and Al atoms, thus decreasing the partial fraction of these elements available to react.

  14. Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Sebastian; Hintermeier, Peter H.; Olarte, Mariefel V.; Liu, Yue; Baráth, Eszter; Lercher, Johannes A.

    2017-08-01

    The hydronium ion normalized reaction rate in aqueous phase alkylation of phenol with ethanol on H-MFI zeolites increases with decreasing concentration of acid sites. Higher rates are caused by higher concentrations of phenol in the zeolite pores, as the concentration of hydronium ions generated by zeolite Brønsted acid sites decreases. Considering the different concentrations of reacting species it is shown that the intrinsic rate constant for alkylation is independent of the concentration of hydronium ions in the zeolite pores. Alkylation at the aromatic ring of phenol and of toluene as well as O-alkylation of phenol have the same activation energy, 104 ± 5 kJ/mol. This is energetic barrier to form the ethyl carbenium ion from ethanol associated to the hydronium ion. Thus, in both the reaction pathways the catalyst involves a carbenium ion, which forms a bond to a nucleophilic oxygen (ether formation) or carbon (alkylation).

  15. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  16. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    Science.gov (United States)

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  17. Kinetic Study on Nucleophilic Substitution Reactions of 4-Chloro-2-nitrophenyl X-Substituted-benzoates with Cyclic Secondary Amines: Effect of Substituent X on Reactivity and Reaction Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Hoon; Kim, Hyun Soo; Han, Young Joon [Sejong Science High School, Seoul (Korea, Republic of); Kim, Minyoung; Um, Ikhwan [Ewha Woman' s Univ., Seoul (Korea, Republic of)

    2013-10-15

    Second-order rate constants (k{sub N}) have been measured spectrophotometrically for the reactions of 4-chloro-2-nitrophenyl X-substituted-benzoates (1a-1h) with a series of cyclic secondary amines in 80 mol % H{sub 2}O/20 mol % DMSO at 25.0 ± 0.1 .deg. C. The Hammett plot for the reactions of 1a-1h with piperidine consists of two intersecting straight lines, while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ρ{sub X} = 1.25 and r = 0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step (RDS) but is caused by ground-state stabilization through resonance interactions for substrates possessing an electron-withdrawing group in the benzoyl moiety. The Brφnsted-type plot for the reactions of 4-chloro-2-nitrophenyl benzoate (1d) with a series of cyclic secondary amines curves downward with β{sub 2} = 0.85, β{sub 1} = 0.24, and pK{sub a}{sup o} = 10.5, implying that a change in RDS occurs from the k{sub 2} step to the k{sub 1} process as the pK{sub a} of the conjugate acid of the amine exceeds 10.5. Dissection of k{sub N} into the microscopic rate constants k{sub 1} and k{sub 2}/k{sub -1} ratio associated with the reaction of 1d reveals that k{sub 2} is dependent on the amine basicity, which is contrary to generally held views.

  18. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  19. A practical deca-gram scale ring expansion of (R)-(-)-carvone to (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1.

    Science.gov (United States)

    Alves, Leandro de C; Desiderá, André L; de Oliveira, Kleber T; Newton, Sean; Ley, Steven V; Brocksom, Timothy J

    2015-07-28

    A route to enantiopure (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1, an intermediate for terpenoids, has been developed and includes a highly chemo- and regioselective Tiffeneau-Demjanov reaction. Starting from readily available (R)-(-)-carvone, this robust sequence is available on a deca-gram scale and uses flow chemistry for the initial epoxidation reaction. The stereochemistry of the addition of two nucleophiles to the carbonyl group of (R)-(-)-carvone has been determined by X-ray diffraction studies and chemical correlation.

  20. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on Cu(100) surfaces modeled as finite clusters; Un estudio teorico cuantico sobre la distribucion de sitios activos electrofilicos y nucleofilicos sobre superficies de Cu(100) modeladas como cumulos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Rios R, C.H.; Romero R, M. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Ponce R, A.; Mendoza H, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo km. 4.5, 42181 Pachuca, Hidalgo (Mexico)]. e-mail:

    2008-07-01

    In this work, it is shown a theoretical quantum study of the active sites distribution on a monocrystalline surface of Cu(100). The copper surface was modeled as finite clusters of 14, 23, 38 and 53 atoms. We performed Hartree-Fock and Density Functional Theory (B3LYP) ab initio calculations employing the pseudopotentials of Hay and Wadt (LANLlMB y LANL2DZ). From calculations, we found a work function value of 4.1 eV. The mapping of the HOMO and LUMO in the frozen core approximation, allowed us finding the electrophilic and nucleophilic active sites distribution, respectively. The results indicated that electrophilic sites on the Cu(100) surface were located on hollow position and its numerical density was 8.6 x 10{sup 16} sites cm{sup -2}. From the nucleophilic local softness study, it was found that the nucleophilic sites were formed by a group of atoms and it had a numerical density of 2.4x 10{sup 16} sitescm{sup -2} . Last results indicated that adsorptions with 2 x 2 and 3 x 3 distributions can be favored onto a Cu(100) surface for the electrophilic and nucleophilic cases, respectively. (Author)

  2. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory.

    Science.gov (United States)

    Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G

    2010-11-25

    Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.

  3. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo; Tan, Davin; Lee, Richmond; Li, Lixin; Pan, Yuanhang; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E

  4. Pyridine group assisted addition of diazo-compounds to imines in the 3-CC reaction of 2-aminopyridines, aldehydes, and diazo-compounds.

    Science.gov (United States)

    Gulevich, Anton V; Helan, Victoria; Wink, Donald J; Gevorgyan, Vladimir

    2013-02-15

    A novel three-component coupling (3-CC) reaction of 2-aminoazines, aromatic aldehydes, and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles as well as β-amino acid derivatives.

  5. A Colorimetric Chemodosimeter for Pd(II): A Method for Detecting Residual Palladium in Cross-Coupling Reactions

    Science.gov (United States)

    Houk, Ronald J. T.; Wallace, Karl J.; Hewage, Himali S.; Anslyn, Eric V.

    2008-01-01

    A colorimetric chemodosimeter (SQ1) for the detection of trace palladium salts in cross-coupling reactions mediated by palladium is described. Decolorization of SQ1 is affected by nucleophilic attack of ethanethiol in basic DMSO solutions. Thiol addition is determined to have an equilibrium constant (Keq) of 2.9 × 106 M-1, with a large entropic and modest enthalpic driving force. This unusual result is attributed to solvent effects arising from a strong coordinative interaction between DMSO and the parent squaraine. Palladium detection is achieved through thiol scavenging from the SQ1-ethanethiol complex leading to a color “turn-on” of the parent squaraine. It was found that untreated samples obtained directly from Suzuki couplings showed no response to the assay. However, treatment of the samples with aqueous nitric acid generates a uniform Pd(NO3)2 species, which gives an appropriate response. “Naked-eye” detection of Pd(NO3)2 was estimated to be as low as 0.5 ppm in solution, and instrument-based detection was tested as low as 100 ppb. The average error over the working range of the assay was determined to be 7%. PMID:19122841

  6. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  7. 4-oxobutenoic acid towards nitrogen-containing nucleophiles

    Indian Academy of Sciences (India)

    Abstract. A series of novel amino acid derivatives has been synthesized by the reaction of 4-[4-methoxy-. 3-methylphenyl]-4-oxobutenoic acid with primary and secondary amines. The treatment of amino acids with hydrazine afforded pyridazine. Phenylhydrazone was obtained from the reaction of the acid with phenyl.

  8. Pyridine Group-Assisted Addition of Diazo-Compounds to Imines in the 3-CC Reaction of 2-Aminopyridines, Aldehydes, and Diazo-Compounds

    Science.gov (United States)

    Gulevich, Anton V.; Helan, Victoria; Wink, Donald J.

    2013-01-01

    A novel three-component (3-CC) coupling reaction of 2-aminoazines, aromatic aldehydes and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles, as well as to β-amino acid derivatives. PMID:23373731

  9. Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis

    KAUST Repository

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    Postsynthetic Surface modification of magnetic nanoparticles by glutathione imparts desirable chemical functionality and enables the generation of catalytic sites on the surfaces of ensuing organocatalysts. In this article, we discuss the developments, unique activity, and high selectivity of nano-organocatalysts for microwave-assisted Paal-Knorr reaction, aza-Michael addition, and pyrazole synthesis. Their insoluble character Coupled with paramagnetic nature enables easy separation of these nano-catalysts from the reaction mixture using external magnet, which eliminates the requirement of catalyst filtration. Published by Elsevier Ltd.

  10. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH3Cl.

    Science.gov (United States)

    Kuechler, Erich R; York, Darrin M

    2014-02-07

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

  11. Clean and Green Synthesis of New Benzothiazole Derivatives via Electrochemical Oxidation of Catechol Derivatives

    Directory of Open Access Journals (Sweden)

    Mansour Arab Chamjangali

    2016-06-01

    Full Text Available Electrochemical oxidation of the catechols 1a and 1b is studied in the presence of 6-methyl-2-thouracil (3b and 6-propyl-2-thiouracil (3a as nucleophiles in a phosphate buffer (0.15 mol L−1, pH = 6.8/DMF (95:5 solution using cyclic voltammetry and controlled-potential coulometry. The results obtained indicate that the quinones derived from the catechols participate in 1,4-Michael-addition reactions with the nucleophiles to form the corresponding new benzothiazole compounds. In this work, we derive a variety of products with good yields using controlled potential at graphite electrodes in an undivided cell. This work is licensed under a Creative Commons Attribution 4.0 International License.

  12. Synthesis of carbasugars from aldonolactones, part III - A study on the allylic substitution of (1R,5R,8R)- and (1R,5R,8S)-8-hydroxy-2-oxabicyclo[3.3.0]oct-6-en-3-one derivatives - Preparation of (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H-adenine

    DEFF Research Database (Denmark)

    Johansen, Steen Karsk; Lundt, Inge

    2001-01-01

    The palladium-catalyzed substitution of acylated (1R,5R,8R)- and (1R,SR,8S)-8-hydroxy-2-oxabicyclo[3.3.0] ones has been studied using a number of C- and N-nucleophiles, In all cases, the exo derivatives (8R) were found to be more reactive than the corresponding endo derivatives (8S). The reaction...... with these nucleophiles. Additionally, Mitsunobu substitution of (1R,5R,8R)-8-hydroxy-2-oxabicyclo[3.3.0]oct-B-en-3-one (3) with 6-chloropurine, followed by reduction of the lactone moiety and treatment with Liquid ammonia, gave the carbocyclic nucleoside (1S,2R,3R)-9-[2-hydroxy-3-(2-hydroxyethyl)cyclopent-4-en-1-yl]-9H...

  13. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tasuku; Saikawa, Kyo [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Kim, Seonah [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Fujita, Kiyotaka [Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima (Japan); Ishiwata, Akihiro [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); Kaeothip, Sophon [ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Arakawa, Takatoshi; Wakagi, Takayoshi [Department of Biotechnology, The University of Tokyo, Tokyo (Japan); Beckham, Gregg T., E-mail: [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Ito, Yukishige [Synthetic Cellular Chemistry Laboratory, RIKEN (Japan); ERATO Glycotrilogy Project, JST, Wako, Saitama (Japan); Fushinobu, Shinya, E-mail: [Department of Biotechnology, The University of Tokyo, Tokyo (Japan)

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  14. Untitled

    Indian Academy of Sciences (India)

    and nucleophile bound to the micelle have been calculated. The above results suggest that reaction occurs between the substrate solubilised into the micelle and the nucleophile residing at the Stern layer rather than at the micelle-water interface. The equilibrium constant, and critical micelle concentration, evaluated using ...

  15. Solid-phase Synthesis of Combinatorial 2,4-Disubstituted-1,3,5-Triazine via Amine Nucleophilic Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Won [KIST Gangneung Institute, Gangneung (Korea, Republic of); Ham, Jungyeob [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Chang, Young-Tae [National University of Singapore, Singapore (Singapore); Lee, Jae Wook [University of Science and Technology, Daejon (Korea, Republic of)

    2015-01-15

    In combinatorial chemistry, solid-phase synthesis is a popular approach formass production of small molecules. Compared to solution-phase synthesis, it is easy to prepare and purify a large number of heterocyclic small molecules via solid-phase chemistry; the overall reaction time is decreased as well. 1,3,5-Triazine is a nitrogen-containing heterocyclic aromatic scaffold that was shown to be a druggable scaffold in recent studies. These structures have been reported as anticancer, antimicrobial, and antiretroviral compounds, as CDKs and p38 MAP kinase inhibitors, as estrogen receptor modulators, and as inosine monophosphate dehydrogenase inhibitors. we designed and synthesized disubstituted triazine compounds as an analog of disubstituted pyrimidine compounds. These disubstituted triazine compounds possess a linear structure which may have biological activity similar to that of disubstituted pyrimidine. Here we report the solid-phase synthesis of disubstituted triazine compounds.

  16. Solid-phase Synthesis of Combinatorial 2,4-Disubstituted-1,3,5-Triazine via Amine Nucleophilic Reaction

    International Nuclear Information System (INIS)

    Moon, Sung Won; Ham, Jungyeob; Chang, Young-Tae; Lee, Jae Wook

    2015-01-01

    In combinatorial chemistry, solid-phase synthesis is a popular approach formass production of small molecules. Compared to solution-phase synthesis, it is easy to prepare and purify a large number of heterocyclic small molecules via solid-phase chemistry; the overall reaction time is decreased as well. 1,3,5-Triazine is a nitrogen-containing heterocyclic aromatic scaffold that was shown to be a druggable scaffold in recent studies. These structures have been reported as anticancer, antimicrobial, and antiretroviral compounds, as CDKs and p38 MAP kinase inhibitors, as estrogen receptor modulators, and as inosine monophosphate dehydrogenase inhibitors. we designed and synthesized disubstituted triazine compounds as an analog of disubstituted pyrimidine compounds. These disubstituted triazine compounds possess a linear structure which may have biological activity similar to that of disubstituted pyrimidine. Here we report the solid-phase synthesis of disubstituted triazine compounds

  17. NCA nucleophilic radiofluorination on substituted benzaldehydes for the preparation of [18F]fluorinated aromatic amino acids

    International Nuclear Information System (INIS)

    Wadsak, Wolfgang; Wirl-Sagadin, Barbara; Mitterhauser, Markus; Mien, Leonhard-Key; Ettlinger, Dagmar E.; Keppler, Bernhard K.; Dudczak, Robert; Kletter, Kurt

    2006-01-01

    Nucleophilic aromatic substitution is a challenging task in radiochemistry. Therefore, a thorough evaluation and optimisation of this step is needed to provide a satisfactory tool for the routine preparation of [ 18 F]fluorinated aromatic amino acids. Two methods, already proposed elsewhere, were evaluated and improved. The yields for the radiofluorination were increased whereas activity loss during solid phase extraction was observed. Radiochemical yields for the two methods were 92.7±5.5% (method 1) and 92.1±12.3% (method 2) for conversion and 11.1±2.8% (method 1) and 34.8±0.6% (method 2) for purification, respectively. In total, we demonstrate an optimised method for the preparation of this important class of [ 18 F]fluorinated synthons for PET

  18. How thioredoxin dissociates its mixed disulfide.

    Directory of Open Access Journals (Sweden)

    Goedele Roos

    2009-08-01

    Full Text Available The dissociation mechanism of the thioredoxin (Trx mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC, was used. In this structure, a Cys29(Trx-Cys89(ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29(Trx on the exposed Cys82(ArsC-Cys89(ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32(Trx in contact with Cys29(Trx. Cys32(Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32(Trx is found to be more reactive than Cys82(ArsC. Additionally, Cys32(Trx directs its nucleophilic attack on the more susceptible Cys29(Trx and not on Cys89(ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx.

  19. Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives

    International Nuclear Information System (INIS)

    Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M

    2010-01-01

    Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives

  20. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals

    International Nuclear Information System (INIS)

    Michael John Vasbinder

    2006-01-01

    Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reaction mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr aq OO 2+ and Rh(NH 3 ) 4 (H 2 O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3 ) 4 (H 2 O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the

  1. ON THE SYNTHESIS OF MOLYBDENUM CARBIDE WITH COBALT ADDITION VIA GAS-SOLID REACTIONS IN A CH4/H2 ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    C. P. B. Araujo

    Full Text Available Abstract Due to ever more severe environmental regulations regarding SOx, NOx and other pollutants' emissions, there has been an interest in developing new and improved catalysts for hydroprocessing reactions. Mo2C has been reported to display good selectivity and activity for those reactions, especially for HDS. Addition of another metal to the carbide structure may improve catalytic properties. Mo2C with low cobalt addition (2.5 and 5% was obtained via gas-solid reaction in a fixed bed reactor with CH4 (5%/H2 atmosphere. XRD and TG/DTA analysis of the precursors were carried out in order to understand its mass loss profile, doping metal presence and phase distributions. CoMoO4 as well as MoO3 were identified after calcining doped precursors at 600 °C/180min. SEM, XRD, XRF, TOC, BET and laser granulometric analysis of the reaction products were also performed. Compositions verified by XRF and theoretical values were compatible. At 700 °C both carbide (Mo2C and oxide (MoO2 phases are present, as identified in XRD analysis and observed by SEM. At 750 °C only single phase Mo2C was verified by XRD, indicating Co dispersion on the carbide matrix. Morphology at this temperature is compatible with pure Mo2C, though XRF indicates Co presence on the material.

  2. Synthesis of 4-Methylene-2-cyclohexenones and Their Aromatization Reaction toward para-Methoxylmethyl Anisole Derivatives

    International Nuclear Information System (INIS)

    Lee, Jeong Mi; Lee, Ka Young; Kim, Jae Nyoung

    2004-01-01

    We and other groups have reported the selective introduction of nucleophiles at the secondary benzylic position of the Baylis-Hillman acetates via the corresponding DABCO salts. Thus, we envisioned that we could prepare 4-methylene- 2-cyclohexenone skeleton and para-methoxymethyl anisoles by combining the DABCO salt concept and the aromatization reaction with iodine in methanol. Suitably substituted anisoles are useful as the starting materials for the fragrances, dyes and pesticides, as antioxidants in oils and fats, or as stabilizers of plastics. Moreover, paramethoxymethyl anisoles have been used for the kinetic acetalization of diol or amino alcohol systems in the presence of DDQ5 during the synthesis of (+)-FR900482, taxotere side chain,5c cyclopropyl lactone oxylipins, and erythromycin A.

  3. The Effect of Mg Addition and Manufacturing Conditions on the Interfacial Reactions between Al and CNT in Al-CNT Pellets

    International Nuclear Information System (INIS)

    Lim, Jung-Kyu; Choi, Soon-Yool; Choe, Kyong-Hwan; Cho, Gue-Serb; Kim, Sang-Sub

    2013-01-01

    In the present study, Al-CNT pellets were investigated to understand the effect of Mg addition and manufacturing conditions on the interfacial reactions between Al and CNTs in Al-CNT pellets. The pellets were heated and held at 700 °C and 800 °C for 2 hours under nitrogen (N_2) atmosphere. To confirm the reactions between Al and CNT in the pellets under different manufacturing conditions, the microstructures were observed by optical microscopy (OM) and field emission scanning electro microscopy (FESEM). And, the composition and reaction phases were analyzed by energy dispersive X-ray spectroscory (EDXS) and X-ray diffractometry (XRD). The presence of oxidation products and Mg on the surface of Al powder in the pellets appeared to prevent the formation of Al_4C_3. But, Al_4C_3 reaction products were increased due to the high temperature of 800 °C, which produced a high amount of reduced aluminium and increased the reaction areas between Al and CNT. The Al-CNT pellets compacted under air atmosphere prohibited the reaction between Al and CNT because of the high amount of oxidation products, such as MgO and MgAl_2O_4.

  4. Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines.

    Science.gov (United States)

    Pronin, Sergey V; Reiher, Christopher A; Shenvi, Ryan A

    2013-09-12

    The SN2 reaction (bimolecular nucleophilic substitution) is a well-known chemical transformation that can be used to join two smaller molecules together into a larger molecule or to exchange one functional group for another. The SN2 reaction proceeds in a very predictable manner: substitution occurs with inversion of stereochemistry, resulting from the 'backside attack' of the electrophilic carbon by the nucleophile. A significant limitation of the SN2 reaction is its intolerance for tertiary carbon atoms: whereas primary and secondary alcohols are viable precursor substrates, tertiary alcohols and their derivatives usually either fail to react or produce stereochemical mixtures of products. Here we report the stereochemical inversion of chiral tertiary alcohols with a nitrogenous nucleophile facilitated by a Lewis-acid-catalysed solvolysis. The method is chemoselective against secondary and primary alcohols, thereby complementing the selectivity of the SN2 reaction. Furthermore, this method for carbon-nitrogen bond formation mimics a putative biosynthetic step in the synthesis of marine terpenoids and enables their preparation from the corresponding terrestrial terpenes. We expect that the general attributes of the methodology will allow chiral tertiary alcohols to be considered viable substrates for stereoinversion reactions.

  5. Reactions of N+ ions with ethylene: a theoretical study on the addition mechanism into the olefin double bond

    International Nuclear Information System (INIS)

    Di Stefano, Marco; Rosi, Marzio; Sgamellotti, Antonio

    2004-01-01

    The potential energy surface of the reaction between ethylene molecules and N + ions is investigated by using the DFT hybrid functional B3LYP with the 6-31G* basis set. The addition channel leading to the intermediate C 2 NH 4 + is considered. We study eighteen structures of the triplet C 2 NH 4 + cations and the transition states for their isomerizations. Then, we consider the release of a H atom to form the doublet C 2 NH 3 + cations. To obtain more accurate values of reaction energetics and barrier heights, coupled cluster CCSD(T) calculations with the 6-311G** basis set are performed on the B3LYP/6-31G* optimized geometries. The addition of N + into C 2 H 4 is computed as a barrierless process leading to the triplet 1-aziridynil cation which, by ring opening, can easily evolve into the 2-azaallyl isomer. This species can then release a hydrogen atom to form the 2-azaallene cation, process that is computed to be the most likely channel

  6. Influence of Mg O and B2O3 addition on reaction sintering, properties and microstructure of Aluminum titanate

    International Nuclear Information System (INIS)

    Ajami, R.; Sarpoolaki, H.; Akbari, G. H.

    2007-01-01

    The effect of Mg O and B 2 O 3 on the formation, physical properties, phase analysis and microstructure of aluminum titanate was investigated. Density results showed the sample containing of 1 wt percent B 2 O 3 and 2 wt percent Mg O leads to the highest density while the lowest density was seen in samples containing 1 wt percent B 2 O 3 compared to pure aluminum titanate. Regarding the phase analysis of samples, Mg O was found most effective additive on reaction sintering of aluminum titanate through the intermediate phases. Furthermore at the temperatures above 1350 d eg C , B 2 O 3 promote the formation reaction of aluminum titanate. Microstructural analysis showed the samples containing Mg O are fine grain and homogeneous. Thermal expansion coefficient of samples with additives is greater than pure aluminum titanate. Pure aluminum titanate samples and one containing B 2 O 3 additive decompose to Al 2 O 3 and TiO 2 after 5 hours heat treatment at 1150 d eg C while the samples containing 2 wt percent Mg O was stable even after 25 hours

  7. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aryliminopropadienone-C-Amidoketenimine- Amidinoketene-2-Aminoquinolone Cascades and the Ynamine-Isocyanate Reaction.

    Science.gov (United States)

    Wentrup, Curt; Rao, V. V. Ramana; Frank, Wilhelm; Fulloon, Belinda E.; Moloney, Daniel W. J.; Mosandl, Thomas

    1999-05-14

    Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford malonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe(2) groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.

  9. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones

    2011-11-01

    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  10. Bioinspired total synthesis of tetrahydrofuran lignans by tandem nucleophilic addition/redox isomerization/oxidative coupling and cycloetherification reactions as key steps

    Czech Academy of Sciences Publication Activity Database

    Jagtap, Pratap; Císařová, I.; Jahn, Ullrich

    2018-01-01

    Roč. 16, č. 5 (2018), s. 750-755 ISSN 1477-0520 R&D Projects: GA ČR GA203/09/1936 Institutional support: RVO:61388963 Keywords : oxygenated benzylic alcohols * transition metal complexes * allylic alcohols Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.564, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2018/ob/c7ob02848b

  11. O ensino de reações orgânicas usando química computacional: I. reações de adição eletrofílica a alquenos Teaching organic reactions using computational chemistry: I. eletrophilic addition reactions to alkenes

    Directory of Open Access Journals (Sweden)

    Arquimedes Mariano

    2008-01-01

    Full Text Available Basic concepts that play an important role in some organic reactions are revisited in this paper, which reports a pedagogical experience involving undergraduate and graduate students. A systematic procedure has been applied in order to use widespread available computational tools. This paper aims to discuss the use of computers in teaching electrophilic addition reactions to alkenes. Two classical examples have been investigated: addition to non-conjugated alkenes and addition to conjugated dienes. The results were compared with those normally discussed in organic textbooks. Several important concepts, such as conformational analysis and energy control (kinetic and thermodynamic involved in reaction mechanisms can be taught more efficiently if one connects theoretical and practical tools.

  12. Solvent effect on the rate and equilibrium of reaction between 10-phenylphenoxarsine and methyl iodide. Vliyanie rastvoritelya na skorost' i ravnovesie reaktsii 10-fenilfenoksarsina s iodistym metilom

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1990-02-01

    Effect of solvent nature on nucleophilic capacity of three-coordinated arsenic and the equilibrium state of 10-phenylphenoxarsine (PA) reaction with methyl iodide are studied. Kinetic investigations are carried out by the conductometry at 24,35,45 deg C. It is established that quaternization of PA with methyl iodide when substituting a solvent (ketone for alcohol) increases 3-14 times with simultaneous growth of the activation energy value. When transforming from aprotic solvents to protic ones PA interaction equilibrium with methyl iodide shifts to the side of arsonic salt formation.

  13. Stereoselective Preparation of N-Alkyl Dipeptide Analogues via Dynamic Kinetic Resolution of α-Halo Acyl Amino Esters

    International Nuclear Information System (INIS)

    Shin, Eun Kyoung; Chang, Ji Yeon; Kim, Hyun Jung; Kim, Yong Tae; Park, Yong Sun

    2006-01-01

    We have shown that dynamic kinetic resolution of α-bromo and α-chloro amides in nucleophilic substitution reaction can be successfully applied towards the preparation of various N-terminal functionalized dipeptide analogues. The stereochemical aspects of the results showed that stereoselectivity depends critically on the structures of amine nucleophiles. This mild and practical method can be run on a multi-gram scale without any special precautions and should be applicable to stereoselective syntheses of various peptidomimetics. Extension of this synthetic methodology to dynamic resolution of N-(α-haloacetyl) peptides in the stereospecific nucleophilic substitution (S N 2) could be an attractive synthetic strategy for asymmetric syntheses of peptide analogues. Recently it has been shown from our group that the chiral information of adjacent amino acid residue is efficiently transferred to the new C-N bond formation at α-halo carbon center for asymmetric syntheses of di-, tri- and tetrapeptide analogues. The α-halo stereogenic center of undergoes rapid epimerization in the presence of diisopropylethylamine (DIEA) and tetrabutylammonium iodide (TBAI), and (αS) reacts with the nucleophile preferentially to provide the dipeptide analogue (αR). The mechanistic investigation showed that this is a case of dynamic kinetic resolution, in which the stereoselectivity is determined by the difference in the diastereomeric transition state energies for the reaction with the nucleophiles. Herein we describe our recent progress to extend the scope of the methodology to stereoselective preparation of N-terminal functionalized dipeptide analogues with various amine nucleophiles

  14. Reaction kinetics of chemical pollutants as a basis of risk estimates in terms of rad-equivalence

    International Nuclear Information System (INIS)

    Ehrenberg, L.; Osterman-Golkar, S.

    1977-01-01

    Most mutagenic and carcinogenic chemicals are electrophilic agents or are converted to electrophilic agents in vivo. A majority of the effective genotoxic compounds are alkylating or arylating. The dose-response curve for mutation induced by alkylating agents is indicated to contain a linear component in the region of low doses. In this region the mutagenic effectiveness per unit dose was found for several alkylating agents to be approximately proportional to the calculated rate of reaction at a certain low nucleophilic strength. This proportionality appears, by and large, to be independent on the nature of the alkyl group introduced. Hence it is possible to ascribe a genetic risk to the degree of alkylation of these centers. This risk may be expressed in rad-equivalents

  15. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry.

    Science.gov (United States)

    Paulech, Jana; Solis, Nestor; Cordwell, Stuart J

    2013-01-01

    Alkylation converts Cys thiols to thioethers and prevents unwanted side reactions, thus facilitating mass spectrometric identification of Cys-containing peptides. Alkylation occurs preferentially at Cys due to its high nucleophilicity, however reactions at other such sites are possible. N-ethylmaleimide (NEM) shows rapid reaction kinetics with Cys and careful definition of reaction conditions results in little reactivity at other sites. Analysis of a protein standard alkylated under differing reaction conditions (pH, NEM concentrations and reaction times) was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and selected reaction monitoring (SRM) of NEM-modified and unmodified peptide pairs. Mis-alkylation sites at primary and secondary amines were identified and limited to one equivalent of NEM. No evidence for hydroxyl or thioether alkylation was observed. Improved specificity was achieved by restricting the pH below neutral, NEM concentration below 10mM and/or reaction time to below 5min. Maximal removal of Cys activity was observed in tissue homogenates at 40mM NEM within 1min, dependent upon efficient protein denaturation. SRM assays identified peptide-specific levels of mis-alkylation, indicating that NEM-modified to unmodified ratios did not exceed 10%, with the exception of Cys alkylation that proceeded to 100%, and some Lys residues that resulted in tryptic missed cleavages. High reactivity was observed for His residues considering their relatively low abundance. These data indicate that rapid and specific Cys alkylation is possible with NEM under relatively mild conditions, with more abrasive conditions leading to increased non-specific alkylation without appreciable benefit for MS-based proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    Science.gov (United States)

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  18. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    Directory of Open Access Journals (Sweden)

    Jiongjiong Li

    2017-09-01

    Full Text Available Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance and Fourier transform infrared (FT-IR spectroscopy to determine the demethylation mechanism. With the demethylation of lignin, the methoxyl group content decreased from 1.93 m mol/g to 1.09 m mol/g, and the phenolic hydroxyl group content increased from 0.56 m mol/g to 0.82 m mol/g. These results revealed that methoxyl groups were attacked by SO32−, and some methoxyl groups were converted to phenolic hydroxyl groups by a nucleophilic substitution reaction, generating DL with high reactivity. The chemical properties of lignin-based phenolic resins were studied by 13C-NMR and FT-IR spectroscopy, and their physical properties were also investigated. The results indicated that lignin-based phenolic resins exhibited faster curing rate and shorter gel time. In addition, the bonding strength increased from 0.92 MPa to 1.07 MPa, and the formaldehyde emission decreased from 0.58 mg/L to 0.22 mg/L after lignin demethylated at the optimum condition.

  19. Electrosynthesis of Clozapine Drug Derivative via an EC Electrochemical Mechanism

    Directory of Open Access Journals (Sweden)

    Esmail Tammari

    2017-12-01

    Full Text Available The fact that oxidation, as one of the main routes of phase I metabolism of drugs, follows by conjugation reactions, and also formation of nitrenium ion as one of the clozapine oxidation products, directed us to investigate the oxidation of clozapine (CLZ in the presence of nucleophile. The oxidation of clozapine (CLZ has been studied on a glassy carbon electrode in the absence and presence of 2-thiobarbituric acid (TBA as nucleophile in aqueous medium by means of cyclic voltammetry and on the graphite rods in controlled-potential coulometry. Cyclic voltammetry studies were realized for CLZ in the pHs 1.0 to 8.0. Results indicate that the electrochemical behavior of CLZ depends on the pH. Based on the obtained electrochemical results, an ECE mechanism was proposed to explain the electrochemical oxidation of CLZ. The results revealed that oxidized CLZ participates in Michael type addition reaction with TBA and via an EC mechanism converts to the corresponding new dibenzodiazepin derivatives. The product has been characterized by IR, 1H NMR, 13C NMR and MS.

  20. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  1. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  2. Synthesis of phosphorothioates using thiophosphate salts

    Directory of Open Access Journals (Sweden)

    Farjadian Fatemeh

    2006-03-01

    Full Text Available Abstract Reactions of O,O'-dialkyl thiophosphoric acids with alkyl halides, in the presence of a base, provide a direct synthetic route to phosphorothioates via O,O'-dialkyl thiophosphate anion formation. Studies on the reaction of ambident nucleophile ammonium O,O'-diethyl thiophosphate with benzyl halides and tosylate in different solvents show that only S-alkylation is obtained. Reaction of this ambident nucleophile with benzoyl chloride (a hard electrophile, gave the O-acylation product. A simple, efficient, and general method has been developed for the synthesis of phosphorothioates through a one-pot reaction of alkyl halides with the mixture of diethyl phosphite in the presence of triethylamine/sulfur/and acidic alumina under solvent-free conditions using microwave irradiation.

  3. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  4. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  5. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    Science.gov (United States)

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell

  6. Preliminary studies towards the preparation of reactive 3-pyrrolin-2-ones in conjugate addition reactions for the syntheses of potentially bioactive 2-pyrrolidinones and pyrrolidines

    International Nuclear Information System (INIS)

    Alves, Jose C.F.

    2007-01-01

    Pyrrolin-2-ones and 2-pyrrolidinones are moieties often found in the structure of several biologically active natural products and 3-pyrrolin-2-ones are valuable starting materials in organic synthesis due to their ability to react as acceptors in conjugate addition reactions. In this article we report the initial results about the performed study aiming at the syntheses of reactive 3-pyrrolin-2-ones in conjugate addition reactions and the preparation of a potential precursor for the synthesis of the nootropic (+/-)-nebracetam. (author)

  7. Attempts to counteract phosgene-induced acute lung injury by instant high-dose aerosol exposure to hexamethylenetetramine, cysteine or glutathione.

    Science.gov (United States)

    Pauluhn, Jürgen; Hai, Chun Xue

    2011-01-01

    Phosgene is an important high-production-volume intermediate with widespread industrial use. Consistent with other lung irritants causing ALI (acute lung injury), mode-of-action-based countermeasures remain rudimentary. This study was conducted to analyze whether extremely short high-level exposure to phosgene gas could be mitigated using three different inhaled nucleophiles administered by inhalation instantly after exposure to phosgene. Groups of young adult male Wistar rats were acutely exposed to carbonyl chloride (phosgene) using a directed-flow nose-only mode of exposure of 600 mg/m³ for 1.5 min (225 ppm × min). Immediately after exposure to phosgene gas the rats were similarly exposed to three strong nucleophiles with and without antioxidant properties for 5 or 15 min. The following nucleophiles were used: hexamethylenetetramine (HMT), l-cysteine (Cys), and l-glutathione (GSH). The concentration of the aerosol (mass median aerodynamic diameter 1.7-2 µm) was targeted to be in the range of 1 mg/L. Cys and GSH have antioxidant properties in addition. The calculated alveolar molar dosage of phosgene was 9 µmol/kg. At 15-min exposure duration, the respective inhaled dose of HMT, Csy, and GSH were 111, 103, and 46 µmol/kg, respectively. The alveolar dose of drugs was ~10-times lower. The efficacy of treatment was judged by protein concentrations in bronchoalveolar lavage fluid (BALF) collected 1 day post-exposure. In spite of using optimized aerosolization techniques, none of the nucleophiles chosen had any mitigating effect on BALF-protein extravasation. This finding appear to suggest that inhaled phosgene gas acylates instantly nucleophilic moieties at the site of initial deposition and that the resultant reaction products can not be reactivated even following instant inhalation treatment with competing nucleophilic agents. In spite of using maximal technically attainable concentrations, it appears to be experimentally challenging to deliver

  8. The dilemma of allergy to food additives.

    Science.gov (United States)

    Bahna, Sami L; Burkhardt, Joshua G

    2018-01-01

    To provide a brief summary on food additives and to outline a practical approach for evaluating subjects suspected of having reactions to food additives. Information was derived from selected reviews and original articles published in peer-reviewed journals, supplemented by the clinical experience of the authors. Priority was given to studies that used blinded, placebo controlled, oral challenges to confirm adverse reactions to food additives. In addition, selected, appropriately evaluated case reports were included. A large number of food additives are widely used in the food industry. Allergic reactions to additives seem to be rare but are very likely underdiagnosed, primarily due to a low index of suspicion. A wide variety of symptoms to food additives have been reported, but a cause-and-effect relationship has not been well documented in the majority of cases. Reactions to food additives should be suspected in patients who report symptoms related to multiple foods or to a certain food when commercially prepared but not when home made. It is also prudent to investigate food additives in subjects considered to have "idiopathic" reactions. Except for a limited number of natural additives, there is a small role for skin tests or in vitro testing. Oral challenge, in stages, with commonly used additives is the definitive procedure for detecting the offending agent. Once the specific additive is identified, management is strict avoidance, which can be difficult.

  9. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.

    Science.gov (United States)

    Lafaye, Céline; Van Molle, Inge; Tamu Dufe, Veronica; Wahni, Khadija; Boudier, Ariane; Leroy, Pierre; Collet, Jean-François; Messens, Joris

    2016-07-15

    Exposure of bacteria to NO results in the nitrosylation of cysteine thiols in proteins and low molecular weight thiols such as GSH. The cells possess enzymatic systems that catalyze the denitrosylation of these modified sulfurs. An important player in these systems is thioredoxin (Trx), a ubiquitous, cytoplasmic oxidoreductase that can denitrosylate proteins in vivo and S-nitrosoglutathione (GSNO) in vitro However, a periplasmic or extracellular denitrosylase has not been identified, raising the question of how extracytoplasmic proteins are repaired after nitrosative damage. In this study, we tested whether DsbG and DsbC, two Trx family proteins that function in reducing pathways in the Escherichia coli periplasm, also possess denitrosylating activity. Both DsbG and DsbC are poorly reactive toward GSNO. Moreover, DsbG is unable to denitrosylate its specific substrate protein, YbiS. Remarkably, by borrowing the CGPC active site of E. coli Trx-1 in combination with a T200M point mutation, we transformed DsbG into an enzyme highly reactive toward GSNO and YbiS. The pKa of the nucleophilic cysteine, as well as the redox and thermodynamic properties of the engineered DsbG are dramatically changed and become similar to those of E. coli Trx-1. X-ray structural insights suggest that this results from a loss of two direct hydrogen bonds to the nucleophilic cysteine sulfur in the DsbG mutant. Our results highlight the plasticity of the Trx structural fold and reveal that the subtle change of the number of hydrogen bonds in the active site of Trx-like proteins is the key factor that thermodynamically controls reactivity toward nitrosylated compounds. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Functional separation of oxidation–reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Wang, Yanhui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Bian, Linyan [College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000 (China); Lu, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zang, Jianbing, E-mail: [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Functional separation of reactions and electron transport in PtRu/ND + AB (or CNT). • A conductive network was formed after the addition of AB or CNT. • PtRu/ND + AB (or CNT) exhibited enhanced activity and stability than PtRu/ND. - Abstract: Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp{sup 3}-bonded ND possesses high electrochemical stability but low conductivity, while sp{sup 2}-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp{sup 3}), as a support, and AB or CNTs (sp{sup 2}), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  11. Pentafluorobenzene end-group as a versatile handle for para fluoro “click” functionalization of polythiophenes† †Electronic supplementary information (ESI) available: Experimental details, MALDI-TOF, 1H and 19F NMR, UV-visible spectroscopy, and photoluminescence spectroscopy results. See DOI: 10.1039/c6sc04427a Click here for additional data file.

    Science.gov (United States)

    Boufflet, Pierre; Casey, Abby; Xia, Yiren; Stavrinou, Paul N.

    2017-01-01

    A convenient method of introducing pentafluorobenzene (PFB) as a single end-group in polythiophene derivatives is reported via in situ quenching of the polymerization. We demonstrate that the PFB-group is a particularly useful end-group due to its ability to undergo fast nucleophilic aromatic substitutions. Using this molecular handle, we are able to quantitatively tether a variety of common nucleophiles to the polythiophene backbone. The mild conditions required for the reaction allows sensitive functional moieties, such as biotin or a cross-linkable trimethoxysilane, to be introduced as end-groups. The high yield enabled the formation of a diblock rod-coil polymer from equimolar reactants under transition metal-free conditions at room temperature. We further demonstrate that water soluble polythiophenes end-capped with PFB can be prepared via the hydrolysis of an ester precursor, and that such polymers are amenable to functionalization under aqueous conditions. PMID:28507677

  12. A DFT study on the mechanisms for the cycloaddition reactions between 1-aza-2-azoniaallene cations and acetylenes.

    Science.gov (United States)

    Wang, Jing-mei; Li, Zhi-ming; Wang, Quan-rui; Tao, Feng-gang

    2013-01-01

    The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3 H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions.

  13. Tandem Oxidative Derivatization of Nitrene Insertion Products for the Highly Diastereoselective Synthesis of 1,3-aminoalcohols.

    Science.gov (United States)

    Alderson, Juliet M; Schomaker, Jennifer M

    2017-06-27

    Transition-metal-catalyzed nitrene insertion into tertiary C-H bonds located at stereogenic carbons often results in mixtures of diastereomeric products, especially if the reaction proceeds through a concerted pathway. In this communication, we report a solution to this problem that invokes a one-pot, silver-catalyzed C-H nitrene transfer reaction. Nitrene insertion is followed by facile oxidation of the amine to an imine and nucleophilic addition to furnish α-tertiary amine 1,3-aminoalcohol products in high diastereoselectivities. The silver catalyst, PhIO oxidant, and TEMPO additive are crucial to success in this unusual oxidation, which is proposed to occur via hydrogen-atom abstraction from pre-activation of the initial nitrene insertion product by additional oxidant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of purines bearing functionalized C-substituents by the conjugate addition of nucleophiles to 6-vinylpurines and 6-ethynylpurines

    Czech Academy of Sciences Publication Activity Database

    Kuchař, Martin; Pohl, Radek; Votruba, Ivan; Hocek, Michal

    -, č. 22 (2006), s. 5083 -5098 ISSN 1434-193X R&D Projects: GA MŠk(CZ) 1M0508; GA AV ČR(CZ) 1QS400550501 Institutional research plan: CEZ:AV0Z40550506 Keywords : purines * Michael addition * conjugate additions * cross-coupling Subject RIV: CC - Organic Chemistry Impact factor: 2.769, year: 2006

  15. The radiochemistry of [18 F]-FDG: the first experience in Mexico

    International Nuclear Information System (INIS)

    Lopez D, F.A.

    2004-01-01

    The present work describes the more used method for the synthesis of 2 - [ 18 F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [ 18 F - ] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [ 18 F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- β-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN 2 ) with the ion [ 18 F - ] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [ 18 F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  16. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  17. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Mecking, Stefan

    2016-01-01

    active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction

  18. I. Activation energies for the gas phase reactions of hydrogen atom with carbon monoxide and with ethylene. II. Rate constants for the reactions of benzyl cation with triethylphosphine and with triethylarsine in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wang, H.Y.

    1976-01-01

    Two H-atom reactions H + CO + H 2 → HCO + H 2 and H + C 2 H 4 → C 2 H 5 * were separately studied from room temperature to about 100 0 C, and the activation energies for these two reactions were determined in this temperature range. For H + C 2 H 4 system, a small activation energy of 0.2 kcal/mole was obtained in the present narrow temperature range. The low activation energy indicates that the pre-exponential factor has a predominant contribution to the rate constant of this reaction and has about the same magnitude as that of the rate constant. For H + CO system, a fairly large activation energy of more than 7 kcal/mole was speculated in the potential energy surfaces of the system. The activation energy obtained in the present work, however, has a low value of about 2 kcal/mole. This low value reveals the low level of crossing of this reaction in the potential energy surface and thus indicates considerable complexity involved in the surface. Carbonium ions can be formed from chosen solutes in pulse-irradiated 1,2-dichloroethane (RCl) solutions. Upon irradiation, the electrons generated from the ionization of the solvent become localized on chloride ions as a result of their reaction with the neutral solvent molecules. The solvent counterion, RCl + , on the other hand, is free to exchange charge with the solute molecule. By choosing appropriate solutes, carbonium ion can be formed through a dissociative ionization process in the exchange. The benzyl cation was formed from its precursor compound dibenzylmercury and its reactions with two nucleophiles, triethylphosphine and triethylarsine, were separately studied. The formation and decay of benzyl cation were observed at 363 nm, the position of the maximum of its absorption band, and the second-order rate constants for the two reactions were determined at room temperature

  19. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    Science.gov (United States)

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  20. Novel support effects on the mechanism of propene-deuterium: Addition and exchange reactions over dispersed ZrO2

    International Nuclear Information System (INIS)

    Naito, Shuichi; Tanimoto, Mitsutoshi

    1995-01-01

    The effect on the rate and mechanisms of propene-deuterium reactions of dispersing ZrO 2 on various supports such as silica, alumina, and titanium dioxide has been studied by microwave spectroscopic analysis of monodeuteropropene as well as by kinetic investigation. By dispersal of ZrO 2 on these supports, the rate of the C 3 H 6 -D 2 reactions is increased considerbly compared to that over unsupported ZrO 2 , with the decrease of activation energy. Hydrogen exchange in propene proceeds simultaneously with addition via the associative mechanism through n-propyl and s-propyl intermediates. Through XPS analysis of ZrO 2 /SiO 2 , it was found that a monolayer of ZrO 2 is formed over the silica support. The monolayer catalyst exhibits catalytic behavior quite different from that of unsupported ZrO 2 . On the other hand, alumina surfaces modified by ZrO 2 layers may be the main active sites in the case of ZrO 2 /Al 2 O 3 . The marked enhancement of the reaction rate in the lower loading region of ZrO 2 /TiO 2 may be explained by the strong interaction of atomically dispersed zirconium ions with active centers on TiO 2 . 28 refs., 10 figs., 1 tab

  1. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    Science.gov (United States)

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  2. 18F fluorination using macrocyclic polyethers

    International Nuclear Information System (INIS)

    Klatte, B.; Knoechel, A.

    The aim of this work is the nucleophilic substitution labelling with 18 F with high selectivity and yield for a short reaction time. Labelling with little or no carrier presumes that 18 F is obtained in anhydrons form. Starting with the production via the nuclear reaction 20 Ne(d,α) 18 F, the 18 F formed is to be continuously converted into an alkali polyether complex whose purpose is to increase the reactivity of the fluoride (compared to the non-complexed anion form), so that nucleophilic substitution reactions can be carried out faster and more carefully. A report is given on the working program and on first results to optimize the carrier-poor synthesis with polyethers as synthesis agent. (RB) [de

  3. The Conjugate Addition- Elimination Reaction of Morita-Baylis-Hillman C- Adducts: A Density Functional Theory Study

    KAUST Repository

    Tan, Davin

    2011-12-01

    The Morita-Baylis-Hillman (MBH) reaction is a very versatile synthetic protocol to synthesize various useful compounds containing several functional groups. MBH acetates and carbonates are highly valued compounds as they have good potential to be precursors for organic synthesis reactions due to their ease of modification and synthesis. This thesis utilizes Density Functional Theory (DFT) calculations to understand the mechanism and selectivity of an unexpected tandem conjugate addition-elimination (CA-E) reaction of allylic alkylated Morita-Baylis-Hillman C- adducts. This synthetic protocol was developed by Prof. Zhi-Yong Jiang and co-workers from Henan University, China. The reaction required the use of sub-stoichiometric amounts of an organic or inorganic Brøndst base as a catalyst and was achieved with excellent yields (96%) in neat conditions. TBD gave the highest yield amongst the organocatalysts and Cs2CO3 gave the highest yield amongst all screened bases. A possible mechanistic pathway was proposed and three different energy profiles were modeled using 1,5,7-triaza-bicyclo-[4.4.0]-dec-5-ene (TBD), Cs2CO3 and CO32- as catalysts. All three models were able to explain the experimental observations, revealing both kinetic and thermodynamic factors influencing the selectivity of the CA-E reaction. CO32- model gave the most promising result, revealing a significant energy difference of 17.9 kcal/mol between the transition states of the two differing pathways and an energy difference of 20.9 kcal/mol between the two possible products. Although TBD modeling did not show significant difference in the transition states of the differing pathways, it revealed an unexpected secondary non-covalent electrostatic interaction, involving the electron deficient C atom of the triaza CN3 moiety of the TBD catalyst and the O atom of a neighboring NO2- group in the intermediate. Subsequent modeling using a similar substrate proved the possibility of this non

  4. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  5. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme.

    Science.gov (United States)

    Ferreira, Dalva E C; De Almeida, Wagner B; Neves, Ademir; Rocha, Willian R

    2008-12-14

    In this work we have applied quantum mechanical calculations, at the density functional theory level, to investigate the phosphate diester hydrolysis promoted by a cationic heterodinuclear Fe(III)...Zn(II) complex that mimics the structural and functional properties of the purple acid phosphatase (PAP) enzymes. The hydrolysis of the dimethyl phosphate diester was investigated in the gas phase and in solution by means of the continuum PCM model, using the B3LYP hybrid exchange-correlation functional. Our computed results showed that the hydrolysis of the dimethyl phosphate ester takes place in two steps. The first step corresponds to a slow P-O bond formation through nucleophilic attack of the coordinated (Fe(III))-OH group. The second step consists of a proton transfer process followed by the release of a methanol molecule. The first step is rate determining with activation free energy of 12.3 kcal mol(-1), which is about 3 times lower than the activation free energy for the uncatalyzed reaction. We also show that the heterodinuclear site plays an important role favoring an associative mechanism for the phosphate diester hydrolysis, favoring the formation of a high energy intermediate phosphorane, and orienting the phosphate group to the nucleophilic attack.

  6. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  7. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    Science.gov (United States)

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  8. The nuclear reaction analysis (NRA) as a means for detecting carbon in GaAs and in source materials and additives

    International Nuclear Information System (INIS)

    Bethge, K.; Mader, A.; Michelmann, R.; Krauskopf, J.; Thee, P.; Meyer, J.D.

    1991-01-01

    The nuclear reaction ananlysis (NRA) on the basis of the reaction 12 C (d,p) 13 C is a method allowing the detection and description of both lateral and depth profiles of the presence of carbon in GaAs and in the source materials and additives. The NRA is an absolute method with a detection limit for C of approx. 4x10 15 cm 3 . The achievable detection range in depth under the experimental conditions goes from the surface down to 6 μm. Combined with channeling measurements, NRA is capable of identifying the position of carbon in the GaAs crystal lattice, and thus permits to examine the mobility of C in GaAs. (BBR) With 11 refs [de

  9. The radiochemistry of [{sup 18} F]-FDG: the first experience in Mexico; La radioquimica del [{sup 18} F]-FDG: la primera experiencia en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez D, F A [Unidad PET-Ciclotron, Facultad de Medicina, UNAM, Av. Universidad 3000, Ciudad Universitaria, Coyoacan, 04500 Mexico, D. F. (Mexico)

    2004-07-01

    The present work describes the more used method for the synthesis of 2 - [{sup 18} F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [{sup 18} F{sup -}] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [{sup 18} F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- {beta}-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN{sub 2}) with the ion [{sup 18} F{sup -}] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [{sup 18} F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  10. Nucleophilic catalysis of MeON-neoglycoside formation by aniline derivatives.

    Science.gov (United States)

    Loskot, Steven A; Zhang, Jianjun; Langenhan, Joseph M

    2013-12-06

    Neoglycosylations are increasingly being employed in the synthesis of natural products, drug candidates, glycopeptide mimics, oligosaccharide analogues, and other applications, but the efficiency of these reactions is usually limited by slow reaction times. Here, we show that aniline derivatives such as 2-amino-5-methoxybenzoic acid enhance the rate of acid-catalyzed neoglycosylation for a range of sugar substrates up to a factor of 32 relative to the uncatalyzed reaction.

  11. Tandem dinucleophilic cyclization of cyclohexane-1,3-diones with pyridinium salts

    Directory of Open Access Journals (Sweden)

    Mostafa Kiamehr

    2013-06-01

    Full Text Available The cyclization of cyclohexane-1,3-diones with various substituted pyridinium salts afforded functionalized 8-oxa-10-aza-tricyclo[7.3.1.02,7]trideca-2(7,11-dienes. The reaction proceeds by regioselective attack of the central carbon atom of the 1,3-dicarbonyl unit to 4-position of the pyridinium salt and subsequent cyclization by base-assisted proton migration and nucleophilic addition of the oxygen atom to the 2-position, as was elucidated by DFT computations. Fairly extensive screening of bases and additives revealed that the presence of potassium cations is essential for formation of the product.

  12. Uranium nucleophilic carbene complexes

    International Nuclear Information System (INIS)

    Tourneux, Jean-Christophe

    2012-01-01

    The only stable f-metal carbene complexes (excluding NHC) metals f present R 2 C 2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph 2 P(=S)} 2 2- (SCS 2- ) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M + on the evolution of the di-anion M 2 SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K 2 [C(PhPS) 2 (C 6 H 4 )]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS 2- and UCl 4 , as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt 2 ) by the neutral ligand SCH 2 S were also studied. The compounds [Li(THF)] 2 [U(SCS)Cl 3 ] and [U(SCS)Cl 2 (THF) 2 ] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl 2 (py) 2 ] and [M(Cp) 2 (SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl - ligands and pyridine by C 5 H 5 - groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO 2 (SCS)(THF) 2 ], was isolated with the uranyl ion UO 2 2+ . The reactions of compounds UO 2 X 2

  13. Straightforward Entry toward Highly Substituted 2,3-Dihydrobenz[ b]oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds.

    Science.gov (United States)

    Courant, Thibaut; Pasco, Morgane; Lecourt, Thomas

    2018-05-04

    Ylide-type reactivity of diazo compounds is exploited in a new way to prepare benzo[ b]oxepines thanks to the formation of three chemical bonds and two contiguous and highly substituted stereocenters in a single pot. This cationic reaction cascade first involves addition of a donor-acceptor-substituted diazo compound to a benzopyrylium. Selective 1,2 migration of the endocyclic C-C bond then results in a ring-expansion and generates a second oxocarbenium that is trapped by a nucleophile added sequentially.

  14. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2017-02-01

    Full Text Available A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl selenide 3f with (4-methoxyphenylmagnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  15. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol.

    Science.gov (United States)

    Perin, Gelson; Barcellos, Angelita M; Luz, Eduardo Q; Borges, Elton L; Jacob, Raquel G; Lenardão, Eder J; Sancineto, Luca; Santi, Claudio

    2017-02-20

    A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ , from the reaction of elemental selenium with NaBH₄, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the ( Z , Z )-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  16. Synthetic Studies Towards the Core Structure of Nakadomarin A by a Thioamide-Based Strategy

    Science.gov (United States)

    Chavda, Jai K; Procopiou, Panayiotis A; Horton, Peter N; Coles, Simon J; Porter, Michael J

    2014-01-01

    The tricyclic BCD substructure of the marine natural product nakadomarin A has been synthesised. The strategy utilised a key carbon–carbon bond-forming reaction between a furan and an N-acyliminium ion derived from a secondary thiolactam. In addition, a novel three-component coupling reaction between a thioamide, an allylic bromide and an isocyanate, leading to the establishment of two new stereogenic centres, is reported. Two key steps in a projected total synthesis of nakadomarin A have been realised by using the unique chemistry of thioamides. Formation of the carbocyclic B ring can be effected by nucleophilic attack of a furan on a thiolactam-derived iminium ion, and the key quaternary centre can be established by a novel three-component coupling reaction. PMID:24829538

  17. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    Science.gov (United States)

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  18. Use of fluorine-18 free of carrier for the synthesis of 2-[18 F]-fluoro-2-deoxy-d-glucose by nucleophilic substitution

    International Nuclear Information System (INIS)

    Garcia S, I.; Ramirez, F.M.

    1990-11-01

    Preliminary studies on the synthesis of 2 - [ 18 F]-fluoro-2-deoxy-d-glucose (2 - [ 18 F]-FDG) were carried out by means of the nucleophilic method proposed by K. Hamacher and the 18 F obtained in the Nuclear Reactor TRIGA Mark III of the Nuclear Center of Mexico. For the control of radiochemical quality it was used the chromatography technique in paper and silica gel with 4 solvent systems. The identification of the marked species with 18 F was carried out by means of comparison of its Rf with the Rf of the obtained not radioactive species, using the same synthesis method. (Author)

  19. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.

    Science.gov (United States)

    Lopachin, Richard M; Gavin, Terrence; Decaprio, Anthony; Barber, David S

    2012-02-20

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  20. APPLICATION OF THE HARD AND SOFT, ACIDS AND BASES (HSAB) THEORY TO TOXICANT-TARGET INTERACTIONS

    Science.gov (United States)

    LoPachin, Richard M.; Gavin, Terrence; DeCaprio, Anthony; Barber, David S.

    2011-01-01

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are however discriminatory, since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acid and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this Perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  1. Nucleophilic Aromatic Addition in Ionizing Environments: Observation and Analysis of New C-N Valence Bonds in Complexes between Naphthalene Radical Cation and Pyridine.

    Science.gov (United States)

    Peverati, Roberto; Platt, Sean P; Attah, Isaac K; Aziz, Saaudallah G; El-Shall, M Samy; Head-Gordon, Martin

    2017-08-30

    Radical organic ions can be stabilized by complexation with neutral organics via interactions that can resemble chemical bonds, but with much diminished bond energies. Those interactions are a key factor in cluster growth and polymerization reactions in ionizing environments such as regions of the interstellar medium and solar nebulae. Such radical cation complexes between naphthalene (Naph) and pyridine (Pyr) are characterized using mass-selected ion mobility experiments. The measured enthalpy of binding of the Naph +• (Pyr) heterodimer (20.9 kcal/mol) exceeds that of the Naph +• (Naph) homodimer (17.8 kcal/mol). The addition of 1-3 more pyridine molecules to the Naph +• (Pyr) heterodimer gives 10-11 kcal/mol increments in binding enthalpy. A rich array of Naph +• (Pyr) isomers are characterized by electronic structure calculations. The calculated Boltzmann distribution at 400 K yields an enthalpy of binding in reasonable agreement with experiment. The global minimum is a distonic cation formed by Pyr attack on Naph +• at the α-carbon, changing its hybridization from sp 2 to distorted sp 3 . The measured collision cross section in helium for the Naph +• (Pyr) heterodimer of 84.9 ± 2.5 Å 2 at 302 K agrees well with calculated angle-averaged cross sections (83.9-85.1 Å 2 at 302 K) of the lowest energy distonic structures. A remarkable 16 kcal/mol increase in the binding energy between Naph +• (Pyr) and Bz +• (Pyr) (Bz is benzene) is understood by energy decomposition analysis. A similar increase in binding from Naph +• (NH 3 ) to Naph +• (Pyr) (as well as between Bz +• (NH 3 ) and Bz +• (Pyr)) is likewise rationalized.

  2. Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jakubowski, Henry V.

    2017-01-01

    Reactivity III is a new course that presents chemical reactions from the domains of organic, inorganic, and biochemistry that are not readily categorized by electrophile-nucleophile interactions. Many of these reactions involve the transfer of a single electron, in either an intermolecular fashion in the case of oxidation/reduction reactions or an…

  3. Addition reaction of adamantylideneadamantane with Br2 and 2Br2: a computational study.

    Science.gov (United States)

    Islam, Shahidul M; Poirier, Raymond A

    2008-01-10

    Ab initio calculations were carried out for the reaction of adamantylideneadamantane (Ad=Ad) with Br2 and 2Br2. Geometries of the reactants, transition states, intermediates, and products were optimized at HF and B3LYP levels of theory using the 6-31G(d) basis set. Energies were also obtained using single point calculations at the MP2/6-31G(d)//HF/6-31G(d), MP2/6-31G(d)//B3LYP/6-31G(d), and B3LYP/6-31+G(d)//B3LYP/6-31G(d) levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Only one pathway was found for the reaction of Ad=Ad with one Br2 producing a bromonium/bromide ion pair. Three mechanisms for the reaction of Ad=Ad with 2Br2 were found, leading to three different structural forms of the bromonium/Br3- ion pair. Activation energies, free energies, and enthalpies of activation along with the relative stability of products for each reaction pathway were calculated. The reaction of Ad=Ad with 2Br2 was strongly favored over the reaction with only one Br2. According to B3LYP/6-31G(d) and single point calculations at MP2, the most stable bromonium/Br3- ion pair would form spontaneously. The most stable of the three bromonium/Br3- ion pairs has a structure very similar to the observed X-ray structure. Free energies of activation and relative stabilities of reactants and products in CCl4 and CH2ClCH2Cl were also calculated with PCM using the united atom (UA0) cavity model and, in general, results similar to the gas phase were obtained. An optimized structure for the trans-1,2-dibromo product was also found at all levels of theory both in gas phase and in solution, but no transition state leading to the trans-1,2-dibromo product was obtained.

  4. The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

    Science.gov (United States)

    2016-01-01

    Conspectus Redox-neutral methods for the functionalization of amine α-C–H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C–H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet–Spengler, and Kabachnik–Fields reactions, Friedel–Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C–H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic

  5. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    Science.gov (United States)

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  6. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  7. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  8. Efficient, regioselective ring-opening of activated aziridine-2-carboxylates with [18F]fluoride

    DEFF Research Database (Denmark)

    Schjøth-Eskesen, Christina; Hansen, Paul Robert; Kjær, Andreas

    2015-01-01

    Aziridines can undergo a range of ring-opening reactions with nucleophiles. The regio- and stereochemistry of the products depend on the substituents on the aziridine. Aziridine ring-opening reactions have rarely been used in radiosynthesis. Herein we report the ring opening of activated aziridine...

  9. An unusually stable chlorophosphite: What makes BIFOP–Cl so robust against hydrolysis?

    Directory of Open Access Journals (Sweden)

    Roberto Blanco Trillo

    2015-03-01

    Full Text Available Two chlorophosphites, the biphenyl-based BIFOP–Cl and the diphenyl ether-based O–BIFOP–Cl, exhibit striking differences regarding their reaction with water. While BIFOP–Cl is nearly completely unreactive, its oxo-derivative O–BIFOP–Cl reacts instantly with water, yielding a tricyclic hydrocarbon unit after rearrangement. The analysis of the crystal structure of O–BIFOP–Cl and BIFOP–Cl revealed that the large steric demand of encapsulating fenchane units renders the phosphorus atom nearly inaccessible by nucleophilic reagents, but only for BIFOP–Cl. In addition to the steric effect, a hypervalent P(III–O interaction as well as an electronic conjugation effect causes the high reactivity of O–BIFOP–Cl. A DFT study of the hydrolysis in BIFOP–Cl verifies a higher repulsive interaction to water and a decreased leaving tendency of the chloride nucleofuge, which is caused by the fenchane units. This high stability of BIFOP–Cl against nucleophiles supports its application as a chiral ligand, for example, in Pd catalysts.

  10. Facile Arylation of Four-Coordinate Boron Halides by Borenium Cation Mediated Boro-desilylation and -destannylation.

    Science.gov (United States)

    Crossley, Daniel L; Cid, Jessica; Curless, Liam D; Turner, Michael L; Ingleson, Michael J

    2015-12-28

    The addition of AlCl 3 to four-coordinate boranes of the general formula (C-N-chelate)BCl 2 results in halide abstraction and formation of three-coordinate borenium cations of the general formula [(C-N-chelate)BCl] + . The latter react with both arylstannanes and arylsilanes by boro-destannylation and -desilylation, respectively, to form arylated boranes. Catalytic quantities of AlCl 3 were sufficient to effect high-yielding arylation of (C-N-chelate)BCl 2 . Boro-destannylation is more rapid than boro-desilylation and leads to double arylation at the boron center, whereas in reactions with arylsilanes either single or double arylation occurs dependent on the nucleophilicity of the arylsilane and on the electrophilicity of the borenium cation. The electrophilicity of the borenium cation derived from 2-phenylpyridine was greater than that of the benzothiadiazole analogues, enabling the boro-desilyation of less nucleophilic silanes and the direct electrophilic borylation of 2-methylthiophene.

  11. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G; Madsen, G; Halken, S

    1994-01-01

    , rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated "lemonade" containing the dissolved additives was used...... dermatitis, asthma, urticaria, gastrointestinal symptoms), and citric acid (atopic dermatitis, gastrointestinal symptoms). The incidence of intolerance of food additives was 2% (6/335), as based on the double-blind challenge, and 7% (23/335), as based on the open challenge with lemonade. Children with atopic...

  13. Investigations on organolead compounds V. Lead---lead bond cleavage reactions of hexaphenyldilead

    NARCIS (Netherlands)

    Willemsens, L.C.; Kerk, G.J.M. van der

    1968-01-01

    It has been shown that a number of nucleophilic and weakly electrophilic reagents (organolithium and organomagnesium compounds, metallic lithium, potassium permanganate, sodium ethoxide, diaryl disulphides, sulphur, ozone, hypochlorous acid and iodine/iodide) selectively cleave the lead---lead bond

  14. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  15. Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine.

    Science.gov (United States)

    Shah, Amisha D; Kim, Jae-Hong; Huang, Ching-Hua

    2006-12-01

    The potential release of carbadox (CDX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. Until this study, the reactivity of carbadox (possessing quinoxaline N,N'-dioxide and hydrazone moieties) toward aqueous chlorine has yetto be investigated in depth. Chemical reactivity, reaction kinetics, and transformation pathways of carbadox and structurally related compounds with free chlorine under typical water treatment conditions were determined. This study found that only CDX and desoxycarbadox (DCDX), a main metabolite of CDX with no ring N-oxide groups, react rapidly with free chlorine while other structurally related compounds including olaquindox, quindoxin, quinoxaline N-oxide, quinoxaline, and quinoline N-oxide do not. The reaction kinetics of CDX and DCDX with chlorine are highly pH dependent (e.g., the apparent second-order rate constant, kapp, for CDX ranges from 51.8 to 3.15 x 10(4) M(-1)s(-1) at pH 4-11). The high reactivity of CDX and DCDX to chlorine involves deprotonation of their hydrazone N-H moieties where initial chlorine attack results in a reactive intermediate that is further attacked by nucleophiles in the matrix to yield non-chlorinated, hydroxylated, and larger molecular weight byproducts. All of the CDX's byproducts retain their biologically active N-oxide groups, suggesting that they may remain as active antibacterial agents.

  16. Novel Interecting Blends Based on Amino Terminited Oligoimides by Using Michael Addition Reaction-II

    Directory of Open Access Journals (Sweden)

    Rita R. Patel

    2012-01-01

    Full Text Available New amino terminated oligoimides (AOIs were prepared by the Michael addition reaction of various bismaleimide (1, namely, 1-(4-((4-((2, 5-dioxocyclopent-3 enylamino methyl cyclohexyl methyl cyclohexyl-1, 6-dihydropyridine-2, 5-dione with excess of various diamines (2a-c. These AOIs were characterized by elemental analysis, FT-IR spectral studies and number average molecular weight estimated by non-aqueous conductometric titrations. AOIs were then treated with acrylol chloride and resultant acryl terminated oligoimides (AcOIs samples were also characterized thermogravimetrically. Each of these AcOI was then combined with the N-phenyl maleimide (PM in THF solvent. The resultant suspensions were then heated in the presence of azobisisobutyronitrile (AIBN as an initiator. The AcOI and PM polymerized through double bond simultaneously and form interacting blends, which were analyzed thermogravimetrically. The glass fiber reinforced composites were fabricated by using the suspensions of the AcOI and PM. The composites of Interacting blends were analyzed for their mechanical, chemical and electrical properties.

  17. Perfluoro Allyl Fluorosulfate (FAFS: A Versatile Building Block for New Fluoroallylic Compounds

    Directory of Open Access Journals (Sweden)

    Giuseppe Marchionni

    2011-08-01

    Full Text Available In this study we will present and discuss both the synthesis of CF2=CFCF2OSO2F (perfluoroallyl fluorosulfate, FAFS, focusing in particular on the important role of C3F6/SO3 ratio, reaction temperature and boron catalyst/SO3 ratio on FAFS’ yield and selectivity, as well as a wide variety of ionic and radical reactions possible with FAFS. We focused our attention on reactions of FAFS with aliphatic and aromatic alcohols, acyl halides, halides, H2O2, ketones and radicals whose synthesis and reaction mechanisms will be presented and discussed. Particular attention will be devoted to the novel diallyl-fluoroalkyl peroxide obtained. Factors such as pKa and Lowry and Pearson’s Hard/Soft Acid-Base Theory which determine the selectivity between Addition/Elimination vs. Nucleophilic Substitution reaction mechanisms on FAFS will also be presented and discussed.

  18. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G; Madsen, G; Halken, S

    1994-01-01

    In a multicenter study conducted at four Danish hospital pediatric departments, the parents of 472 consecutive children were informed of this project to determine the incidence of intolerance of food additives among children referred to an allergy clinic with symptoms of asthma, atopic dermatitis......, rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated "lemonade" containing the dissolved additives was used...... dermatitis, asthma, urticaria, gastrointestinal symptoms), and citric acid (atopic dermatitis, gastrointestinal symptoms). The incidence of intolerance of food additives was 2% (6/335), as based on the double-blind challenge, and 7% (23/335), as based on the open challenge with lemonade. Children with atopic...

  19. A NIR sensor for cyanide detection and its application in cell imaging.

    Science.gov (United States)

    Wu, Wei-Na; Wu, Hao; Wang, Yuan; Zhao, Xiao-Lei; Xu, Zhou-Qing; Xu, Zhi-Hong; Fan, Yun-Chang

    2018-06-15

    A novel 'D-π-A' sensor 1 has been designed and prepared via the condensation reaction of 3‑ethyl‑2‑methyl‑1,3‑benzothiazol‑3‑ium iodide and 5‑nitro‑o‑vanillin. Upon treatment with cyanide, sensor 1 exhibited a significant near-infrared (NIR) fluorescence quenching at 663nm. The MS, IR, 1 H NMR and DFT methods confirmed that the response of 1 to cyanide is due to the nucleophilic addition reaction, which results in the inhibition of the Intramolecular Charge Transfer (ICT) process in the sensor. Furthermore, sensor 1 was used for the determination of CN - in HeLa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  1. Ion-Molecule Reaction of Gas-Phase Chromium Oxyanions: CrxOyHz- + H2O

    International Nuclear Information System (INIS)

    Gianotto, Anita Kay; Hodges, Brittany DM; Benson, Michael Timothy; Harrington, Peter Boves; Appelhans, Anthony David; Olson, John Eric; Groenewold, Gary Steven

    2003-01-01

    Chromium oxyanions having the general formula CrxOyHz- play a key role in many industrial, environmental, and analytical processes, which motivated investigations of their intrinsic reactivity. Reactions with water are perhaps the most significant, and were studied by generating CrxOyHz- in the gas phase using a quadrupole ion trap secondary ion mass spectrometer. Of the ions in the Cr1OyHz envelope (y = 2, 3, 4; z = 0, 1), only CrO2- was observed to react with H2O, producing the hydrated CrO3H2- at a slow rate (∼0.07% of the ion-molecule collision constant at 310 K). CrO3-, CrO4-, and CrO4H- were unreactive. In contrast, Cr2O4-, Cr2O5-, and Cr2O5H2- displayed a considerable tendency to react with H2O. Cr2O4- underwent sequential reactions with H2O, initially producing Cr2O5H2- at a rate that was ∼7% efficient. Cr2O5H2- then reacted with a second H2O by addition to form Cr2O6H4- (1.8% efficient) and by OH abstraction to form Cr2O6H3- (0.6% efficient). The reactions of Cr2O5- were similar to those of Cr2O5H2-: Cr2O5- underwent addition to form Cr2O6H2- (3% efficient) and OH abstraction to form Cr2O6H- (<1% efficient). By comparison, Cr2O6- was unreactive with H2O, and in fact, no further H2O addition could be observed for any of the Cr2O6Hz- anions. Hartree-Fock ab initio calculations showed that reactive CrxOyHz- species underwent nucleophilic attack by the incoming H2O molecules, which produced an initially formed adduct in which the water O was bound to a Cr center. The experimental and computational studies suggested that Cr2OyHz- species that have bi- or tricoordinated Cr centers are susceptible to attack by H2O; however, when the metal becomes tetracoordinate, reactivity stops. For the Cr2OyHz- anions the lowest energy structures all contained rhombic Cr2O2 rings with pendant O atoms and/or OH groups. The initially formed [Cr2Oy- + H2O] adducts underwent H rearrangement to a gem O atom to produce stable dihydroxy structures. The calculations indicated that

  2. Effect of 2-methyl-substituted nitroimidazoles on the hydrolysis of 4-nitrophenyl esters. Suffield report

    Energy Technology Data Exchange (ETDEWEB)

    Clewley, R.G.; Adie, C.P.; Brouwer, B.H.

    1994-03-01

    Prior to investigating nitroimidazole surfactants for use in a new catalytic chemical agent decontaminant, the catalysis afforded by simple nitroimidazoles in hydrolysis reactions has been examined. The effect of 2-methyl-5-nitroimidazole on the hydrolysis of 4-nitrophenyl diphenylphosphinate and of 2-methyl-5-nitrobenzimidazole on the hydrolyses of both 4-nitrophenyl diphenylphosphinate and 4-nitrophenyl acetate has been determined. In all three cases there is a simple linear dependency of the reaction rate on the concentration of the anionic form of the nitroimidazole. Previous results had suggested self-inhibition by the nucleophile occurred in the 2-methyl-5-nitroimidazole catalysed hydrolysis of 4-nitrophenyl diphenylphosphinate; this hypothesis is no longer tenable. Comparison of the reactivity of 2-methyl -substituted nitroimidazolides to that of the corresponding unsubstituted species suggests that 2-alkyl-substituted nitroionidazole surfactants would not be significantly worse catalysts of the hydrolysis of organophosphorus species than their 4-substituted analogues. Decontamination, Chemical reactivity, Displacement reactions, Nucleophilic reactions, Imidazoles, Nitroimidazoles, Phenoxides, Simulants, UV Spectrophotometry, Mechanism.

  3. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  4. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    Science.gov (United States)

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl

  5. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  6. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Science.gov (United States)

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of Morita-Baylis-Hillman adducts with phosphorus nucleophiles.

    Science.gov (United States)

    Ntatsopoulos, Vassilis; Vassiliou, Stamatia; Macegoniuk, Katarzyna; Berlicki, Łukasz; Mucha, Artur

    2017-06-16

    The reactivity of Morita-Baylis-Hillman allyl acetates was employed to introduce phosphorus-containing functionalities to the side chain of the cinnamic acid conjugated system by nucleophilic displacement. The proximity of two acidic groups, the carboxylate and phosphonate/phosphinate groups, was necessary to form interactions in the active site of urease by recently described inhibitor frameworks. Several organophosphorus scaffolds were obtained and screened for inhibition of the bacterial urease, an enzyme that is essential for survival of urinary and gastrointestinal tract pathogens. α-Substituted phosphonomethyl- and 2-phosphonoethyl-cinnamate appeared to be the most potent and were further optimized. As a result, one of the most potent organophosphorus inhibitors of urease, α-phosphonomethyl-p-methylcinnamic acid, was identified, with K i  = 0.6 μM for Sporosarcina pasteurii urease. High complementarity to the enzyme active site was achieved with this structure, as any further modifications significantly decreased its affinity. Finally, this work describes the challenges faced in developing ligands for urease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface.

    Science.gov (United States)

    Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J

    2017-10-12

    The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is

  9. SHORT COMMUNICATION SYNTHESIS OF AZIDO DERIVATIVES ...

    African Journals Online (AJOL)

    Preferred Customer

    Department of Chemistry & Chemical Technology, Faculty of Science, Engineering & ... substitution reactions with various nucleophiles, including azides and ... readily available substrate for the synthesis of an array of chemical compounds.

  10. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  11. Radiation curable Michael addition compounds

    International Nuclear Information System (INIS)

    Gruber, G.W.; Friedlander, C.B.; McDonald, W.H.; Dowbenko, R.

    1979-01-01

    Radiation polymerizable acrylyloxy-containing reaction products are provided from Michael addition reaction of an amide containing at least two acrylate groups with a primary or secondary amine. The resulting amine adducts of the amide, which contain at least one acrylate group per molecule, possesses high cure rates in air and are useful in compositions for forming coatings. (author)

  12. Synthesis and stability of N,N′-Dialkyl-1,13-dimethoxyquinacridinium (DMQA+)

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Nielsen, Merete Folmer; Laursen, Bo Wegge

    2014-01-01

    and building blocks. In the present study, electrochemical and spectroscopic studies showed that several redox states of DMQA+ are accessible and stable. The cation stability towards nucleophiles is determined and it is shown that the addition of OH- proceeds with a surprisingly low rate of reaction....... The synthetic methodologies leading to DMQA+ are described, and the chemistry occurring from the different redox states of DMQA is identified. This [4]helicene is shown to be a unique molecular framework that is stable as a neutral radical and very stable as a carbenium ion....

  13. Synthesis of D-fructose-derived spirocyclic 2-substituted-2-oxazoline ribosides

    Directory of Open Access Journals (Sweden)

    Madhuri Vangala

    2015-11-01

    Full Text Available The TMSOTf-mediated synthesis of β-configured spirocyclic 2-substituted-2-oxazoline ribosides was achieved using a “Ritter-like” reaction in toluene through nucleophilic addition of electron-rich nitriles to the oxacarbenium ion intermediate of 1,2;3,4-di-O-isopropylidene-β-D-psicofuranose derivatives with concomitant intramolecular trapping of the C2 hydroxymethyl group on the electrophilic nitrilium carbon. These carbohydrate-derived spirooxazolines are stable and were obtained in good yield with high stereoselectivity due to the conformational rigidity imparted by the 3,4-isopropylidene group.

  14. Investigation on the Effect of Addition of Fe3+ Ion into the Colloidal AgNPs in PVA Solution and Understanding Its Reaction Mechanism

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2017-11-01

    Full Text Available Analysis of Fe3+ ion present in aqueous solutions is always of interests. Recently, this ion has been analyzed by colorimetric methods using colloid of silver nanoparticles (AgNPs in capping agents of polymers. The reaction mechanism between AgNPs and Fe3+ is still subject to the further investigation. In this work, 1,10-phenanthroline was used to probe the reaction mechanism between AgNPs and Fe3+ ion in the solution. The colloids of AgNPs were prepared in the polyvinyl alcohol (PVA solution and reacted with Fe3+. The colloid surface plasmon absorbance decreases linearly along with the increase in Fe3+ concentration. The addition of 1,10-phenanthroline to mixture changes the solution to red, indicating that the reaction produces Fe2+. This suggests that the reduction of the AgNPs absorbance is the result of oxidation of the Ag nanoparticles along with the reduction of Fe3+.

  15. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  16. Radiation chemical addition of dimethylformamide to α-olefins

    International Nuclear Information System (INIS)

    Dederichs, B.; Saus, A.; Lennertz, A.M.

    1977-10-01

    With n-hexene-1, n-octene-1 and n-decene-1 the radiation-initiated addition of demethyl formamide to α-olefins is described for the fist time. N,N-dimethyl alkane carbonic acid amides and N-methyl-N-alkyl formamides are formed in a ratio of about 50:50. The addition reaction is investigated in depencence of a solvent, of the ratio of the reaction, temperature, reaction time and dose rate. Mechanistic considerations are performed by radiolysis experiments of dimethyl formamide. (orig.) [de

  17. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  19. Nucleophilic addition to olefins. 5. Reaction of 1,1-dinitro-2,2-diphenylethylene with water and hydroxide ion in 50% Me2SO-50% water. Complete kinetic analysis of hydrolytic cleavage of the C=C double bond in acidic and basic solution

    International Nuclear Information System (INIS)

    Bernasconi, C.F.; Carre, D.J.; Kanavarioti, A.

    1981-01-01

    Hydrolysis of 1,1-dinitro-2,2-diphenylethylene (2) to form benzophenone and dinitromethane (or its anion) was studied in 50% Me 2 SO-50% H 2 O and also in 50% Me 2 SO-50% D 2 O at pHs of 1 to 16. Solvent isotope effects general acid and general base catalysis, and structure-reactivity relationships were used to study the kinetics. The conclusions are the following: (1) the equilibrium constants for OH - and water addition to 2 to form T/sub OH/ - are comparable to those for the corresponding reactions of benzylidene Meldrum's acid (1), but the rate constants are much lower for 2 than for 1; (2) carbon protonation of T/sub OH/ - follows an Eigen curve similar to that for 1,1-dinitroethane anion but which is displaced upward by nearly 1 log unit. This indicates a higher intrinsic protonation rate because of a smaller charge delocalization in T/sub OH/ - owing to an enhanced steric hindrance to coplanarity of the nitro groups in T/sub OH/ - ; (3) intramolecular proton transfer from the OH group to the carbanionic site in T/sub OH/ - is insignificant, which is in contrast to the behavior of the addition complex between 2 and morpholine; (4) the base-catalyzed breakdown of T/sub OH/ 0 into benzophenone and dinitromethane anion occurs by rate-limiting oxygen deprotonation, which implies that k 4 for CH(NO 2 ) 2 - departure from T/sub OH/ 0- is much greater than 2 x 10 9 s -1 , a remarkably high rate for a carbanionic leaving group. The water-catalyzed breakdown of T/sub OH/ 0 proceeds by a different mechanism, which is most likely concerted, with a transition state; (5) the acid-catalyzed breakdown of T/sub OH/ 2- occurs by rate-limiting carbon protonation (k 6 /sup BH/), but the water-catalyzed breakdown follows a different mechanism. Various possibilities are discussed, and a slight preference is given to a preassociation mechanism

  20. Synthesis of Aminofuran-Linked Benzimidazoles and Cyanopyrrole-Fused Benzimidazoles by Condition-Based Skeletal Divergence.

    Science.gov (United States)

    Hsu, Wei-Shun; Tsai, Min-Huan; Barve, Indrajeet J; Yellol, Gorakh S; Sun, Chung-Ming

    2017-07-10

    A condition-based skeletal divergent synthesis was explored to achieve skeletal diversity in two component condensation reaction. Cyanomethyl benzimidazole was reacted with α-bromoketone under thermal conditions to furnish 2-aminofuranyl-benzimidazoles, while the same reaction afforded 3-cyano-benzopyrrolo-imidazoles under microwave irradiation. Two nonequivalent nucleophilic centers on benzimidazole moiety were manipulated elegantly by different reaction conditions to achieve the skeletal diversity.

  1. Some symmetrical halogen and methoxy exchange reactions in aromatic systems; Quelques reactions symetriques d'echanges d'halogenes et de groupes methoxyles dans les composes aromatiques; Simmetricheskie reaktsii s galoidnym i metoksidnym obmenom v aromaticheskikh sistemakh; Algunas reacciones simetricas de intercambio de halogenos y grupos metoxilo en compuestos aromaticos

    Energy Technology Data Exchange (ETDEWEB)

    Broadbank, R W.C.; Harhash, A H.E.; Kanchanalai, S [Leicester College of Technology and Commerce, Leicester (United Kingdom)

    1962-03-15

    Isotope tracers are essential in the study of the kinetics of symmetrical nucleophilic substitution reactions at an aromatic carbon atom. The iodine exchange between iodo-nitro-aromatic compounds and iodide ions in acetone or methanol solution has been studied both qualitatively and quantitatively by labelling the iodide ions with iodine-131. The reaction mixture is sampled at convenient time intervals, the two reactants separated by toluene-water extraction, and the progress of the reaction ascertained by beta-counting with a liquid Geiger counter. Measurements have been extended to 'carrier-free' concentrations of iodide ions. The preparation of certain nitro-methoxy-aromatic compounds, labelled with carbon-14 in the methoxy group, is described. Symmetrical methoxy exchange reactions of these compounds with methoxide ions, in methanol solution, have been studied. After separation of the reactants (from samples of the reaction mixture taken at convenient time intervals) by toluene-water extraction, the aromatic compounds are recovered and then specific activities determined by beta-scintillation counting with a plastic phosphor. In the discussion of the experimental data, special attention is paid to the effect of ionic strength on the specific rate of the reaction. Comparison is made with ionic strength effects observed in symmetrical biomolecular nucleophilic reactions at a saturated (aliphatic) carbon atom, and reference is made to certain other aromatic nucleophilic substitution reactions. (author) [French] Les indicateurs radioactifs sont indispensables pour l'etude cinetique des reactions symetriques de substitution nucleophilique dans l'atome carbone de aromatique. L'echange d'iode entre des composes iodo-nitro-aromatiques et des ions iodure dissous dans de l'acetone ou du methanol a ete etudie a la fois quantitativement et qualitativement par marquage des ions iodure a l'iode-131. Le melange reactif a ete echantillonne a des intervalles appropries, les

  2. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  3. Mannich Bases: An Important Pharmacophore in Present Scenario

    Directory of Open Access Journals (Sweden)

    Suman Bala

    2014-01-01

    Full Text Available Mannich bases are the end products of Mannich reaction and are known as beta-amino ketone carrying compounds. Mannich reaction is a carbon-carbon bond forming nucleophilic addition reaction and is a key step in synthesis of a wide variety of natural products, pharmaceuticals, and so forth. Mannich reaction is important for the construction of nitrogen containing compounds. There is a number of aminoalkyl chain bearing Mannich bases like fluoxetine, atropine, ethacrynic acid, trihexyphenidyl, and so forth with high curative value. The literature studies enlighten the fact that Mannich bases are very reactive and recognized to possess potent diverse activities like anti-inflammatory, anticancer, antifilarial, antibacterial, antifungal, anticonvulsant, anthelmintic, antitubercular, analgesic, anti-HIV, antimalarial, antipsychotic, antiviral activities and so forth. The biological activity of Mannich bases is mainly attributed to α, β-unsaturated ketone which can be generated by deamination of hydrogen atom of the amine group.

  4. Presidential Green Chemistry Challenge: 1998 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winner, Flexsys America, developed nucleophilic aromatic substitution for hydrogen to eliminate waste from a common reaction and to produce 4-ADPA, a high-volume chemical.

  5. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  6. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao; Schmitt, Meghan L.; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2013-01-01

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  7. Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50.

    Science.gov (United States)

    Nguyen, Van Sang; Loh, Xin Yi; Wijaya, Hadhi; Wang, Jigang; Lin, Qingsong; Lam, Yulin; Wong, Wai-Shiu Fred; Mok, Yu Keung

    2015-02-27

    Andrographolide (1) is a diterpenoid lactone with an α,β-unsaturated lactone group that inhibits NF-κB DNA binding. Andrographolide reacts with the nucleophilic Cys62 of NF-κB p50 through a Michael addition at the Δ(12(13)) exocylic double bond to form a covalent adduct. Using computer docking, site-directed mutagenesis, and mass spectrometry, the noncovalent interactions between andrographolide and additional binding site residues other than Cys62 were found to be essential for the covalent incorporation of andrographolide. Furthermore, the addition reaction of andrographolide on Cys62 was highly dependent on the redox conditions and on the vicinity of nearby, positively charged Arg residues in the conserved RxxRxR motif. The reaction mechanisms of several of the analogues were determined, showing that 14-deoxy-11,12-didehydroandrographolide (8) reacts with NF-κB p50 via a novel mechanism distinct from andrographolide. The noncovalent interaction and redox environment of the binding site should be considered, in addition to the electrophilicity, when designing a covalent drug. Analogues similar in structure appear to use distinct reaction mechanisms and may have very different cytotoxicities, e.g., compound 6.

  8. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  9. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.

    Science.gov (United States)

    Wang, Shujiang; Gurav, Deepanjali; Oommen, Oommen P; Varghese, Oommen P

    2015-04-07

    The dynamic covalent-coupling reaction involving α-effect nucleophiles has revolutionized bioconjugation approaches, due to its ease and high efficiency. Key to its success is the discovery of aniline as a nucleophilic catalyst, which made this reaction feasible under physiological conditions. Aniline however, is not so effective for keto substrates. Here, we investigate the mechanism of aniline activation in the oxime reaction with aldehyde and keto substrates. We also present carboxylates as activating agents that can promote the oxime reaction with both aldehyde and keto substrates at physiological pH. This rate enhancement circumvents the influence of α-effect by forming H-bonds with the rate-limiting intermediate, which drives the reaction to completion. The combination of aniline and carboxylates had a synergistic effect, resulting in a ∼14-31-fold increase in reaction rate at pD 7.4 with keto substrates. The biocompatibility and efficiency of carboxylate as an activating agent is demonstrated by performing cell-surface oxime labeling at physiological pH using acetate, which showed promising results that were comparable with aniline. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A modular design of a molecular tweezer is presented that integrates a multipolar D--A [D: Donor, A: Acceptor] scaffold, 1-aminopyrene-based fluorophore units and L-alanine-based linkers. The synthesis of the molecule is based on two-fold aromatic nucleophilic reactions (ArSN) and coupling reactions of the acid and ...

  12. Intra-molecular selectivity of muonium towards chlorinated aromatic compounds

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Stadlbauer, J.M.; Laing, M.E.; Klugkist, J.; Chong, D.P.; Porter, G.B.; Walker, D.C.

    1994-01-01

    Muon resonance studies show that muonium atoms (Mu) in ethanol add selectively to certain C-sites of aromatic compounds containing -Cl and -OH substituents. The sites chosen seem to be those carrying the lowest electron density. This helps to characterize Mu as a nucleophile in addition reactions and, in this respect, Mu differs from ordinary H-atoms. The study shows no apparent inter-molecular selectivity between a pair of aromatic solutes in an equimolar mixture, but strong intra-molecular selectivity in an ether composed of those two aromatic rings. This difference between intra- and inter-molecular selectivity is interpreted as kinetic in origin - arising from the 'caging effect' of the solvent and peculiar to reactions close to the diffusion-controlled limit. (orig.)

  13. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    Science.gov (United States)

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  14. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  15. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    Science.gov (United States)

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reaction between phenyl derivatives of lanthanides and carbonyl compounds

    International Nuclear Information System (INIS)

    Sigalov, A.B.; Petrov, Eh.S.; Rybakova, L.F.; Beletskaya, I.P.

    1983-01-01

    Reactions of PhLnI (Ln=Yb, Eu, Sm, Ce) with α, β-unsaturated ketons (trans-chalcone and benzalacetone) are considered as well as with 9-fluorene and benzophenone. The regioselectivity of the reaction of PhLnI addition to enones is compared with similar reactions of PhMgX and PhLi. The reaction between PhLnI and trans-chalcone proceeds regiospecifically as 1, 2-addition in contrast with reactions of PhMgI and PhLi. A new reaction of lanthanide carbinolate deoxygenation under the effect of reducers was found. The reaction product yields are presented

  17. Plasmon assisted synthesis of highly fluorescing silver quantum cluster / polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    greater photostability than organic fluorophores [2]. In this work AgQCs are embedded into the oligoaniline porous matrix and is employed for indirect fluorescence detection of cyanide in a simple microfluidic. The reaction mechanism is based on the well-known oxidative polymerization of aniline......-called nucleophile activated oxidative dissolution was employed for destruction of the AgQCs [3]. The nucleophile (cyanide) donates an electron pair at the AgQC surface through a coordinative bond. This increases the electron density at the surface, thereby displacing free electron density towards the bulk...

  18. New liquid crystals in the series of 1, 3, 5-triazine compounds ...

    African Journals Online (AJOL)

    The Series of compounds were prepared by nucleophilic addition of the primary amino nucleophile to 1,3,5-triazine electrophilic ring via alkyl spacers in presence of potassium carbonate as hydrochloride acceptor. Differencial scanning calorimetry (DSC), polarizing optical microscopy and x-ray diffraction confirmed Smectic ...

  19. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    Science.gov (United States)

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  20. Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives

    Science.gov (United States)

    Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.

    2007-01-01

    Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.

  1. systemic chemistry triangle

    African Journals Online (AJOL)

    Temechegn

    At the end of the learning process by SCT the student gain systemic learning outcomes ... Johnstone and his group [13].have demonstrated the reducing effect of working memory .... Nucleophilic Substitution Reactions, SN2-Mechanism.

  2. Enantioselective conjugate addition of hydroxylamines to pyrazolidinone acrylamides.

    Science.gov (United States)

    Sibi, M P; Liu, M

    2001-12-27

    Chiral relay templates provide amplification of selectivity in conjugate addition reactions. Reversal of stereochemistry of the product isoxazolidinones has also been demonstrated by a simple change of the Lewis acid. [reaction: see text

  3. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    Science.gov (United States)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  4. Synthesis of 15N-labelled urea and methylenediurea

    International Nuclear Information System (INIS)

    Murray, T.P.; Jones, G.T.

    1985-01-01

    A new technique was developed for the large-scale synthesis of 15 N-labelled urea at low enrichment levels. The synthesis is based on nucleophilic displacement of the phenoxide ion from phenyl carbonate and uses anhydrous ammonia as the nucleophile. In previous reports a copper catalyst was used; however, in this study it was found that the copper resulted in product decomposition and tar formation, which makes product purification difficult. A novel set of reaction conditions was developed: no catalyst was used, and no product decomposition or tar formation occurred. The reaction product was easily purified, and consistently high yields of 15 N-labelled urea were obtained. 15 N-labelled methylenediurea was prepared by the dilute solution reaction of formalin with 15 N-labelled urea. The methodology developed for the reclamation of unreacted urea resulted in minimum loss of labelled urea. High performance liquid chromatography has been used to determine the chemical purity of both urea and methylenediurea. (author)

  5. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  6. Food and food additives in severe atopic dermatitis.

    Science.gov (United States)

    Van Bever, H P; Docx, M; Stevens, W J

    1989-11-01

    In this study the role of food additives, tyramine and acetylsalicylic acid, was investigated by double-blind placebo-controlled challenges (DBPCC) in 25 children with severe atopic dermatitis (AD). All children challenged with foods (n = 24), except one, showed one or more positive reactions to the DBPCC with foods. Positive reactions presented as different combinations of flares of skin symptoms, intestinal symptoms and respiratory symptoms. Seventeen children (70.8%) showed a positive challenge to egg, 12 to wheat (50%), eight to milk (33.3%) and eight to soya (33.3%). Six children underwent DBPCC with food additives, tyramine and acetylsalicylic acid. All were found to demonstrate positive skin and/or intestinal reactions to at least one of the food additives. Two children reacted to tartrazine, three to sodium benzoate, two to sodium glutamate, two to sodium metabisulfite, four to acetylsalicylic acid and one to tyramine. It is concluded that some foods, food additives, tyramine and acetylsalicylic acid, can cause positive DBPCC in children with severe AD.

  7. Effects from additives on deacetylation of chitin

    International Nuclear Information System (INIS)

    Campana Filho, Sergio P.; Signini, Roberta

    2001-01-01

    Deacetylation reactions of commercial chitin were carried out in aqueous sodium hydroxide solution at 115 deg C for 6 hours. The effect from additives (sodium borohydride or anthraquinone) and of bubbling inert gas (nitrogen or argon) on the characteristics of deacetylated samples were evaluated. Average degrees of acetylation and intrinsic viscosity were determined by 1 H NMR spectroscopy and capillary viscometry, respectively. X-ray diffraction was employed to evaluate changes in crystallinity and infrared spectroscopy was used to monitor structural changes due to deacetylation. The bubbling of inert gas during the deacetylation reaction resulted in more crystalline samples of chitosan. Deacetylation carried out without any additive produced slightly more deacetylated chitosan but they were severely depolymerized. The depolymerization process was much less important when sodium borohydride was added to the reaction medium but the addition of anthraquinone and the bubbling of nitrogen, or argon, did not have any effect, this suggests that oxygen is not required for depolymerization. (author)

  8. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  9. Synthesis of Heterocycles through a Ruthenium‐Catalyzed Tandem Ring‐Closing Metathesis/Isomerization/N‐Acyliminium Cyclization Sequence

    DEFF Research Database (Denmark)

    Ascic, Erhad; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2011-01-01

    Tandem bicycle: In the title reaction double bonds created during ring-closing metathesis isomerize to generate reactive iminium intermediates that undergo intramolecular cyclization reactions with tethered heteroatom and carbon nucleophiles. In this way, a series of biologically interesting hete...... heterocyclic compounds can be made, including a known precursor for the total synthesis of the antiparasitic natural product harmicine....

  10. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    Science.gov (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    selenolates are described. This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) selenolates toward nucleophiles such ...

  12. Intramolecular cascade rearrangements of enynamine derived ketenimines: access to acyclic and cyclic amidines.

    Science.gov (United States)

    Chauhan, Dinesh Pratapsinh; Varma, Sreejith J; Gudem, Mahesh; Panigrahi, Nihar; Singh, Khushboo; Hazra, Anirban; Talukdar, Pinaki

    2017-06-07

    Copper-catalyzed reaction of enynamines with sulfonylazides provides acyclic and cyclic amidines. Nucleophilic addition of the tethered amino group on the in situ generated ketenimine forms a six-membered cyclic zwitterionic intermediate which facilitates migration of the tethered amino group to the C 5 -center giving the acyclic amidine. On the other hand, migration of a substituent on the amino group to C 2 - and C 4 -centers results in the formation of cyclic amidines. Computational studies were carried out to validate the mechanism which indicates that the product distribution of the process depends on the substitutions on the enynamine backbone.

  13. Effect of Additives on the Selectivity and Reactivity of Enzymes.

    Science.gov (United States)

    Liang, Yi-Ru; Wu, Qi; Lin, Xian-Fu

    2017-01-01

    Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reactions of a stable dialkylsilylene and their mechanisms

    Indian Academy of Sciences (India)

    Stable silylene; mechanisms; photoreaction; addition; insertion; DFT. 1. ... Some of these reactions provide useful ... Although much attention has been ... sis, structure, and spectroscopic properties of 1 that .... Because silylenes are usually in the singlet ground state ..... selective 1,2-/1,4-addition reactions of dialkylsilylenes.

  15. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  16. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  17. Rates of proton transfer to Fe-S-based clusters: comparison of clusters containing {MFe(mu(2)-S)(2)}n+ and {MFe(3)(mu(3)-S)(4)}n+ (M = Fe, Mo, or W) cores.

    Science.gov (United States)

    Bates, Katie; Garrett, Brendan; Henderson, Richard A

    2007-12-24

    The rates of proton transfer from [pyrH]+ (pyr = pyrrolidine) to the binuclear complexes [Fe2S2Cl4]2- and [S2MS2FeCl2]2- (M = Mo or W) are reported. The reactions were studied using stopped-flow spectrophotometry, and the rate constants for proton transfer were determined from analysis of the kinetics of the substitution reactions of these clusters with the nucleophiles Br- or PhS- in the presence of [pyrH]+. In general, Br- is a poor nucleophile for these clusters, and proton transfer occurs before Br- binds, allowing direct measure of the rate of proton transfer from [pyrH]+ to the cluster. In contrast, PhS- is a better nucleophile, and a pathway in which PhS- binds preferentially to the cluster prior to proton transfer from [pyrH]+ usually operates. For the reaction of [Fe2S2Cl4]2- with PhS- in the presence of [pyrH]+ both pathways are observed. Comparison of the results presented in this paper with analogous studies reported earlier on cuboidal Fe-S-based clusters allows discussion of the factors which affect the rates of proton transfer in synthetic clusters including the nuclearity of the cluster core, the metal composition, and the nature of the terminal ligands. The possible relevance of these findings to the protonation sites of natural Fe-S-based clusters, including FeMo-cofactor from nitrogenase, are presented.

  18. 'In-Crystallo' Capture of a Michaelis Complex And Product Binding Modes of a Bacterial Phosphotriesterase

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C.J.; Foo, J.-L.; Kim, H.-K.; Carr, P.D.; Liu, J.-W.; Salem, G.; Ollis, D.L.

    2009-05-18

    The mechanism by which the binuclear metallophosphotriesterases (PTEs, E.C. 3.1.8.1) catalyse substrate hydrolysis has been extensively studied. The {mu}-hydroxo bridge between the metal ions has been proposed to be the initiating nucleophile in the hydrolytic reaction. In contrast, analysis of some biomimetic systems has indicated that {mu}-hydroxo bridges are often not themselves nucleophiles, but act as general bases for freely exchangeable nucleophilic water molecules. Herein, we present crystallographic analyses of a bacterial PTE from Agrobacterium radiobacter, OpdA, capturing the enzyme-substrate complex during hydrolysis. This model of the Michaelis complex suggests the alignment of the substrate will favor attack from a solvent molecule terminally coordinated to the {alpha}-metal ion. The bridging of both metal ions by the product, without disruption of the {mu}-hydroxo bridge, is also consistent with nucleophilic attack occurring from the terminal position. When phosphodiesters are soaked into crystals of OpdA, they coordinate bidentately to the {beta}-metal ion, displacing the {mu}-hydroxo bridge. Thus, alternative product-binding modes exist for the PTEs, and it is the bridging mode that appears to result from phosphotriester hydrolysis. Kinetic analysis of the PTE and promiscuous phosphodiesterase activities confirms that the presence of a {mu}-hydroxo bridge during phosphotriester hydrolysis is correlated with a lower pK{sub a} for the nucleophile, consistent with a general base function during catalysis.

  19. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  20. Ring transformations of heterocyclic halogeno compounds with nucleophiles. 39

    NARCIS (Netherlands)

    Geerts, J.P.; Plas, van der H.C.

    1978-01-01

    Treatment of 4-chloro-2-dimethylaminopyrimidine (1a) and its 5-phenyl derivative (1b) with potassium amide in liquid ammonia and subsequent workup of the reaction mixtures lead to the formation of 2-dimethylamino-4-methyl-s-triazine and 4-benzyl-2-dimethylamino-s-triazine, respectively. By extensive

  1. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md. Ehtesham Ul; Lee, Hai Whang [Inha Univ., Incheon (Korea, Republic of)

    2012-10-15

    The nucleophilic substitution reactions of diisopropyl chlorothiophosphate with X-pyridines have been kinetically studied in MeCN at 35.0 .deg. C. The Hammett and Bronsted plots for the substituent X variations in the nucleophiles show biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 5 exhibits great negative deviation from the Taft plot. A concerted S{sub N}2 mechanism is proposed involving a change of the attacking direction of the X-pyridines from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines.

  2. Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2 x 1 Surface

    International Nuclear Information System (INIS)

    Lee, Hee Soon; Choi, Cheol Ho

    2012-01-01

    The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)- 2 x 1 surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a S N 2 type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-NH 2 bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile

  3. Effects of additives on PVG dosifilm

    International Nuclear Information System (INIS)

    Chen Wenxiu; Liu, Aiguo

    1995-01-01

    Dosifilm PVG is a new radiochromic film dosimeter composed of matrix material polyvinyl butyral (PVB), leuco malachite green (LMG) and additive halogenated organic compound (RX), etc. The control of the dose range on PVG dosifilm was examined. The addition of halogenated compounds played an important role in the radiation reaction of LMG beyond the concentration of LMG. Bromide is more effective than chloride in this system, the oxidative species are X · and X 2 · - . PVB with N-bromosuccinimide (NBS) can induce the oxidation of LMG before irradiation. The reaction mechanism of PVG was discussed. Different linear ranges of radiation response on PVG dosifilm could be controlled by alternating the relative concentrations of halogenated compounds and LMG. (author)

  4. Synthesis and Photochemistry of 1-Iodocyclohexene:Influence of Ultrasound on Ionic vs. Radical Behaviour

    Directory of Open Access Journals (Sweden)

    Jaroslav Blasko

    2007-02-01

    Full Text Available Simultaneous application of UV light and ultrasonic irradiation to a reaction mixture containing 1-iodocyclohexene is reported. The irradiation of 1-iodocyclohexene in methanol was carried out with or without addition of zinc. The effect of ultrasound or mechanical stirring on this solid-liquid system was also compared. The irradiation of 1-iodocyclohexene in methanol in the presence of zinc increases the yield of the nucleophilic trapping product, compared with the yield after irradiation in the absence of zinc. The photodegradation of 1-iodocyclohexene was slightly accelerated after addition of zinc. A rapid formation of radical product was accompanied by substantial decrease of 1-iodocyclohexene after application of ultrasound and irradiation without the zinc. The ultrasound significantly affects the photobehaviour of this reaction, predominantly its radical route. The joint application of ultrasound and zinc contributes positively to the production of radical and ionic products. The sonochemical stirring is more effective than mechanical stirring.

  5. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  6. Microwave-Assisted Synthesis of Phenothiazine and Qinoline Derivatives

    Directory of Open Access Journals (Sweden)

    Ioan A. Silberg

    2007-02-01

    Full Text Available Application of a dynamic microwave power system in the chemical synthesis ofsome phenothiazine and quinoline derivatives is described. Heterocyclic ring formation,aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensationreactions were performed on solid support, or under solvent free reaction conditions. Themicrowave-assisted Duff formylation of phenothiazine was achieved. Comparison ofmicrowave-assisted synthesis with the conventional synthetic methods demonstratesadvantages related to shorter reaction times and in some cases better reaction yields.

  7. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  8. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  9. Reaction mechanisms of metal complexes

    CERN Document Server

    Hay, R W

    2000-01-01

    This text provides a general background as a course module in the area of inorganic reaction mechanisms, suitable for advanced undergraduate and postgraduate study and/or research. The topic has important research applications in the metallurgical industry and is of interest in the science of biochemistry, biology, organic, inorganic and bioinorganic chemistry. In addition to coverage of substitution reactions in four-, five- and six-coordinate complexes, the book contains further chapters devoted to isomerization and racemization reactions, to the general field of redox reactions, and to the reactions of coordinated ligands. It is relevant in other fields such as organic, bioinorganic and biological chemistry, providing a bridge to organic reaction mechanisms. The book also contains a chapter on the kinetic background to the subject with many illustrative examples which should prove useful to those beginning research. Provides a general background as a course module in the area of inorganic reaction mechanis...

  10. Synthesis and reactions of cyclovalence isomers of azo-keto-carbenes

    International Nuclear Information System (INIS)

    Rettenbacher, A.S.

    2001-09-01

    Novel types of cycloaddition products with an azomethine imine functionality have been prepared from ω-azo-α'-diazo ketones with a carbon chain of variable length between the azo- and the keto-group; the reaction is induced by catalytical amounts of rhodium(II) acetate and occurs with the concomitant extrusion of dinitrogen. The synthesis of these cyclic azomethine imines succeeded in the course of the intramolecular reaction of the azo nitrogen atoms with a carbene/carbenoid carbon atom, in situ generated from the α-diazoketone functionality; this is a novel cyclization reaction. Some of the resulting cyclization products are stable and have been isolated, others could only be trapped with dipolarophiles as [3+2] cycloadducts. The ring-size of the heterocyclic products depends on the one hand on the length of the carbon-chain (for n = 0, 1, 2) between the carbonyl carbon atom and the quaternary aliphatic or aromatic carbon atom that blocks the tautomerization of the azo-group in the starting material. On the other hand, the ring size depends on which of the two nitrogen atoms of the azo-group undergoes the ring closure with the carbene/carbenoid carbon atom generated from the α-diazoketon functionality in the course of the reaction. By far the most serious problem in the preparation of the cyclic azomethine imines is the synthesis of the required ω-azo-α'-diazo ketones. A so far unknown property of the azo-group is its intramolecularly directed nucleophilicity toward ketenes, which emerge from acid chlorides and anhydrides, or from α-diazo ketones in the course of the Wolff rearrangement. This complicated the approach to the required ω-azo-α'-diazo ketones via these functionalities as precursors and with the desired chain length between the azo- and diazo-keto-groups. Nevertheless, these problems could be overcome by using alternative strategies. Utilizing ω-azo-α'-diazo ketones a largely commonly applicable approach to endocyclic and N

  11. Potential hazards due to food additives in oral hygiene products.

    Science.gov (United States)

    Tuncer Budanur, Damla; Yas, Murat Cengizhan; Sepet, Elif

    2016-01-01

    Food additives used to preserve flavor or to enhance the taste and appearance of foods are also available in oral hygiene products. The aim of this review is to provide information concerning food additives in oral hygiene products and their adverse effects. A great many of food additives in oral hygiene products are potential allergens and they may lead to allergic reactions such as urticaria, contact dermatitis, rhinitis, and angioedema. Dental practitioners, as well as health care providers, must be aware of the possibility of allergic reactions due to food additives in oral hygiene products. Proper dosage levels, delivery vehicles, frequency, potential benefits, and adverse effects of oral health products should be explained completely to the patients. There is a necessity to raise the awareness among dental professionals on this subject and to develop a data gathering system for possible adverse reactions.

  12. Models for risk assessment of reactive chemicals in aquatic toxicology

    NARCIS (Netherlands)

    Freidig, Andreas Peter

    2000-01-01

    A quantitative structure property relationship (QSPR) for a,b-unsaturated carboxylates (mainly acrylates and methacrylates) was established in chapter 2. Chemical reaction rate constants were measured for 12 different chemicals with three different nucleophiles, namely H 2 O, OH - and glutathione

  13. Statistical nuclear reactions

    International Nuclear Information System (INIS)

    Hilaire, S.

    2001-01-01

    A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)

  14. Ozonization, Amination and Photoreduction of Graphene Oxide for Triiodide Reduction Reaction: An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Jing, Hongyu; Ren, Suzhen; Shi, Yantao; Song, Xuedan; Yang, Ying; Guo, Yanan; An, Yonglin; Hao, Ce

    2017-01-01

    This work proposes a mild and environmentally-friendly approach to prepare a highly efficient functional graphene (termed as AGO-hv) using methods of ozone oxidation, solvothermal synthesis, and photoreduction. The use of ozone oxidation in the first step can effectively increase the interlaminar distance between graphite oxide sheets, and create active sites for nucleophilic attack on the epoxy carbon from ammonia. The amino groups were successfully grafted on the surface of graphene as evidenced by the amidation reaction, with a maximum nitrogen content of 10.46 wt% and a C/N molar ratio of 8.46. After further photoreduction of the aminated graphite oxide (AGO), the residual oxygen functionalities, such as C-OH, were effectively removed and the conductivity of the graphene sheet was further recovered. The dye-sensitized solar cell (DSC) exhibited a power conversion efficiency (PCE) of 7.51% based on AGO-hv counter electrode (CE), close to that of Pt counterpart (7.79%). The experimental results indicated that the amidation and photoreduction processes were significantly facilitated by the initial ozonization of graphene oxide, and this process significantly improved the electrochemical activity and the conductivity of graphene oxide. Density functional theory (DFT) calculations revealed that AGO-hv had the lowest ionization energy (a better electron-donating ability) and also suitable binding energy with I atoms as well. The combination of ozonization, amination and photoreduction is an efficient route to obtain electrocatalysts with desired compositional distributions and performance for triiodide reduction reaction in DSCs.

  15. Molecular rearrangements of superelectrophiles

    Directory of Open Access Journals (Sweden)

    Douglas A. Klumpp

    2011-03-01

    Full Text Available Superelectrophiles are multiply charged cationic species (dications, trications, etc. which are characterized by their reactions with weak nucleophiles. These reactive intermediates may also undergo a wide variety of rearrangement-type reactions. Superelectrophilic rearrangements are often driven by charge–charge repulsive effects, as these densely charged ions react so as to maximize the distances between charge centers. These rearrangements involve reaction steps similar to monocationic rearrangements, such as alkyl group shifts, Wagner–Meerwein shifts, hydride shifts, ring opening reactions, and other skeletal rearrangements. This review will describe these types of superelectrophilic reactions.

  16. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  17. Effects of additives on PVG dosifilm

    Energy Technology Data Exchange (ETDEWEB)

    Wenxiu, Chen; Liu, Aiguo [Beijing Normal Univ., BJ (China). Dept. of Chemistry

    1995-03-01

    Dosifilm PVG is a new radiochromic film dosimeter composed of matrix material polyvinyl butyral (PVB), leuco malachite green (LMG) and additive halogenated organic compound (RX), etc. The control of the dose range on PVG dosifilm was examined. The addition of halogenated compounds played an important role in the radiation reaction of LMG beyond the concentration of LMG. Bromide is more effective than chloride in this system, the oxidative species are X {center_dot} and X{sub 2} {center_dot} {sup -}. PVB with N-bromosuccinimide (NBS) can induce the oxidation of LMG before irradiation. The reaction mechanism of PVG was discussed. Different linear ranges of radiation response on PVG dosifilm could be controlled by alternating the relative concentrations of halogenated compounds and LMG. (author).

  18. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  19. Thermal 18F atom addition to olefins

    International Nuclear Information System (INIS)

    Rogers, P.J.M.

    1986-01-01

    The addition of thermal 18 F atoms to olefins was investigated using various substrate molecules. The 18 F atoms were produced by the 19 F(n,2n) 18 F nuclear reaction with >10 5 eV of energy which is removed by multiple collisions with SF 6 molecules before reaction occurs with an olefin. By varying the SF 6 /substrate mole ratio it was demonstrated that the fraction of non-thermal reactions is dependent upon the frequency of non-reactive energy reducing collisions with SF 6 . The rate constants for addition and abstraction reactions with propene, cis-1-chloropropene and trans-1-chloropropene were determined. The substitution of a C1 atom for the olefinic H atom in the C 1 position does not affect the rate of 18 F bond formation but it changes the orientation of attack. The 18 F atom prefers the terminal carbon-in propene and propene-d 6 by a factor of 1.35 while the preference is less than 0.5 for the terminal carbon in cis-1-chloropropene and trans-1-chloropropene. The addition of 18 F atoms to olefins creates vibrationally excited fluoroalkyl radicals which can either decompose or stabilize by collision with another molecule. The rate constants for decomposition of excited CH 3 CHCHC1F radicals formed by 18 F addition to cis-1-chloropropene and trans-1-chloropropene are competitive with C 1 -C 2 bond rotation. The 18 F atoms add to the parent molecule with retention of geometry and a memory of the geometry persists as demonstrated by the cis-1-fluoropropene/trans-1-fluoropropene decomposition product ratio

  20. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.